• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wu, Shikai (Wu, Shikai.) | Zhang, Jianchao (Zhang, Jianchao.) | Yang, Jiaoxi (Yang, Jiaoxi.) | Lu, Junxia (Lu, Junxia.) | Liao, Hongbin (Liao, Hongbin.) | Wang, Xiaoyu (Wang, Xiaoyu.)

收录:

EI Scopus SCIE

摘要:

Reduced activation ferritic martensitic (RAFM) steel is chosen as a structural material for test blanket modules (TBMs) to be constructed in International Thermonuclear Experimental Reactor (ITER) and China Fusion Engineering Test Reactor (CFETR). Chinese specific RAFM steel named with CLF-1 has been developed for CFETR. In this paper, a narrow-gap groove laser multi-pass welding of CLF-1 steel with thickness of 35 mm is conduced by YLS-15000 fiber laser. Further, the microstructures of different regions in the weld joint were characterized, and tensile impact and micro-hardness tests were carried out for evaluating the mecharical properties. The results show that the butt weld joint of CLF-1 steel with a thickness of 35 mm was well-formed using the optimal narrow-gap laser filler wire welding and no obvious defects was found such as incomplete fusion cracks and pores. The microstructures of backing layer is dominated by lath martensites and the Heat-Affected Zone (HAZ) was mainly filled with two-phase hybrid structures of secondary-tempering sorbites and martensites. The filler layer is similar to the backing layer in microstructures. In tensile tests, the tensile samples from different parts of the joint all fractured at base metal (BM). The micro-hardness of weld metal (WM) was found to be higher than that of BM and the Heat-Affected Zone (HAZ) exhibited no obvious softening. After post weld heat treatment (PWHT), it can be observed that the fusion zone of the autogenous welding bead and the upper filling beads mainly consist of lath martensites which caused the lower impact absorbing energy. The HAZ mainly included two-phase hybrid structures of secondary-tempering sorbites and martensites and exhibited favorable impact toughness. (C) 2018 Elsevier B.V. All rights reserved.

关键词:

作者机构:

  • [ 1 ] [Wu, Shikai]Beijing Univ Technol, Inst Laser Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Zhang, Jianchao]Beijing Univ Technol, Inst Laser Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Yang, Jiaoxi]Beijing Univ Technol, Inst Laser Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Lu, Junxia]Beijing Univ Technol, Inst Laser Engn, Beijing 100124, Peoples R China
  • [ 5 ] [Liao, Hongbin]Southwestern Inst Phys, Chengdu 610041, Sichuan, Peoples R China
  • [ 6 ] [Wang, Xiaoyu]Southwestern Inst Phys, Chengdu 610041, Sichuan, Peoples R China

通讯作者信息:

  • [Wu, Shikai]Beijing Univ Technol, Inst Laser Engn, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

JOURNAL OF NUCLEAR MATERIALS

ISSN: 0022-3115

年份: 2018

卷: 503

页码: 66-74

3 . 1 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:156

JCR分区:1

被引次数:

WoS核心集被引频次: 37

SCOPUS被引频次: 40

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 5

在线人数/总访问数:1202/3893028
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司