Indexed by:
Abstract:
The strength and deformation characteristics of rocks are the most important mechanical properties for rock engineering constructions. A new nonlinear strength criterion is developed for rocks by combining the Hoek-Brown (HB) criterion and the nonlinear unified strength criterion (NUSC). The proposed criterion takes account of the intermediate principal stress effect against HB criterion, as well as being nonlinear in the meridian plane against NUSC. Only three parameters are required to be determined by experiments, including the two HB parameters sigma(c) and m(i) . The failure surface of the proposed criterion is continuous, smooth and convex. The proposed criterion fits the true triaxial test data well and performs better than the other three existing criteria. Then, by introducing the Geological Strength Index, the proposed criterion is extended to rock masses and predicts the test data well. Finally, based on the proposed criterion, a triaxial elasto-plastic damage model for intact rock is developed. The plastic part is based on the effective stress, whose yield function is developed by the proposed criterion. For the damage part, the evolution function is assumed to have an exponential form. The performance of the constitutive model shows good agreement with the results of experimental tests.
Keyword:
Reprint Author's Address:
Email:
Source :
ROCK MECHANICS AND ROCK ENGINEERING
ISSN: 0723-2632
Year: 2018
Issue: 5
Volume: 51
Page: 1413-1429
6 . 2 0 0
JCR@2022
ESI Discipline: GEOSCIENCES;
ESI HC Threshold:139
JCR Journal Grade:1
Cited Count:
WoS CC Cited Count: 15
SCOPUS Cited Count: 19
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1