• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zheng, Kangfeng (Zheng, Kangfeng.) | Wang, Xiujuan (Wang, Xiujuan.)

收录:

EI Scopus SCIE

摘要:

Feature selection remains a popular method for quantity reduction of attributes of high-dimensional data, to reduce computational costs in classifications. A new feature selection method based on the joint maximal information entropy between features and class (FS-JMIE) is proposed in this paper. Firstly, the joint maximal information entropy (JMIE) is defined to measure a feature subset Next, a binary particle swarm optimization (BPSO) algorithm is introduced to search the optimal feature subset. Finally, classification is performed on UCI corpora to verify the performance of our proposed method compared to the traditional mutual information (MI) method, CHI method, as well as a binary version of particle swarm optimization-support vector machines (BPSO-SVMs) feature selection. Experiments show that FS-JMIE achieves an equal or better performance than MI, CHI, and BPSO-SVM. Further, FS-JMIE manifests relatively better robustness to the number of classes. Moreover, the method shows higher consistency and better time-efficiency than BPSO-SVM. (C) 2017 Elsevier Ltd. All rights reserved.

关键词:

Entropy BPSO Maximal information coefficient Feature selection

作者机构:

  • [ 1 ] [Zheng, Kangfeng]Beijing Univ Posts & Telecommun, Sch Cyberspace Secur, Beijing 100876, Peoples R China
  • [ 2 ] [Wang, Xiujuan]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

通讯作者信息:

  • [Wang, Xiujuan]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

PATTERN RECOGNITION

ISSN: 0031-3203

年份: 2018

卷: 77

页码: 20-29

8 . 0 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:156

JCR分区:1

被引次数:

WoS核心集被引频次: 70

SCOPUS被引频次: 81

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:556/4752115
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司