• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Cao, Y. (Cao, Y..) | Li, X. (Li, X..) | Wang, S. (Wang, S..) | Shen, L. (Shen, L..)

收录:

Scopus PKU CSCD

摘要:

Learning-based image super-resolution is one of the most promising approaches to solve the image super-resolution problem. A novel pre-classified learning based image super-resolution algorithm is proposed to reduce the complexity of full searching and to avoid mismatching. A texture-based pre-classified process is used to select a subset of samples. Then, the best-matching samples are searched among the selected subsets. In the proposed algorithm, the complexity of the searching process is effectively reduced by the texture-based pre-classified process. Furthermore, using the texture features, the mismatching probability is reduced. Experimental results show that both the visual quality and the run-time are improved.

关键词:

Learning; Super-resolution; Texture features; Training set

作者机构:

  • [ 1 ] [Cao, Y.]Signal and Information Processing Lab, Beijing University of Technology, Beijing 100124, China
  • [ 2 ] [Li, X.]Signal and Information Processing Lab, Beijing University of Technology, Beijing 100124, China
  • [ 3 ] [Wang, S.]Signal and Information Processing Lab, Beijing University of Technology, Beijing 100124, China
  • [ 4 ] [Shen, L.]Signal and Information Processing Lab, Beijing University of Technology, Beijing 100124, China

通讯作者信息:

  • [Cao, Y.]Signal and Information Processing Lab, Beijing University of Technology, Beijing 100124, China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Journal of Data Acquisition and Processing

ISSN: 1004-9037

年份: 2009

期: 4

卷: 24

页码: 514-518

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:1323/4269935
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司