• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Shang, H.-L. (Shang, H.-L..) | Peng, Y.-Z. (Peng, Y.-Z..) (学者:彭永臻) | Zhang, J.-R. (Zhang, J.-R..) | Wang, S.-Y. (Wang, S.-Y..) (学者:王淑莹)

收录:

Scopus PKU CSCD

摘要:

The experiment investigated the nitrous oxide production under different C/N ratios during denitrification, taking nitrate and nitrite as electron acceptor respectively. Ethanol was selected as carbon source. The C/N ratios were 0, 1.2, 2.4, 3.5, 5.0 and 20 when nitrate was taken as electron acceptor and C/N ratios 0, 1.8, 2.4, 3.0, 4.3, 5.2, 6.6, 20.6 when electron acceptor was nitrite. The results indicated that: the optimum C/N ratio was 3.0 taking nitrite as electron acceptor and the N2O production was 0.044 mg·L-1; the optimum C/N ratio was 5.0 taking nitrate as electron acceptor and the N2O production was 0.135 mg·L-1 which was 3 times higher than that of nitrite as electron acceptor. Though the electron acceptor changed, the trend of N2O production was similar: when carbon source was badly insufficient, the production of N2O and denitrification rate were both quite small; the N2O production increased with the increasing of the quantity of carbon source; when the carbon source was excessive, the N2O production sharply raised. Consequendy, compared to complete nitrification and denitrification, short-cut nitrification and denitrification could save 40% carbon source. Moreover, controlling C/N = 3 could reduce the production of N2O in short-cut nitrification.

关键词:

C/N ratio; Denitrification; Nitrate; Nitrite; Nitrous oxide

作者机构:

  • [ 1 ] [Shang, H.-L.]Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
  • [ 2 ] [Peng, Y.-Z.]Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
  • [ 3 ] [Zhang, J.-R.]Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
  • [ 4 ] [Wang, S.-Y.]Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China

通讯作者信息:

  • 彭永臻

    [Peng, Y.-Z.]Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Environmental Science

ISSN: 0250-3301

年份: 2009

期: 7

卷: 30

页码: 2007-2012

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:1027/4290642
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司