• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yang, Cuicui (Yang, Cuicui.) | Ji, Junzhong (Ji, Junzhong.) (学者:冀俊忠) | Zhang, Aidong (Zhang, Aidong.)

收录:

EI Scopus SCIE

摘要:

Identifying functional modules in PPI networks contributes greatly to the understanding of cellular functions and mechanisms. Recently, the swarm intelligence-based approaches have become effective ways for detecting functional modules in PPI networks. This paper presents a new computational approach based on bacterial foraging optimization for functional module detection in PPI networks (called BFO-FMD). In BFO-FMD, each bacterium represents a candidate module partition encoded as a directed graph, which is first initialized by a random-walk behavior according to the topological and functional information between protein nodes. Then, BFO-FMD utilizes four principal biological mechanisms, chemotaxis, conjugation, reproduction, and elimination and dispersal to search for better protein module partitions. To verify the performance of BFO-FMD, we compared it with several other typical methods on three common yeast datasets. The experimental results demonstrate the excellent performances of BFO-FMD in terms of various evaluation metrics. BFO-FMD achieves outstanding Recall, F-measure, and PPV while performing very well in terms of other metrics. Thus, it can accurately predict protein modules and help biologists to find some novel biological insights.

关键词:

Computational biology Bacterial foraging optimization Protein-protein interaction network Functional module detection

作者机构:

  • [ 1 ] [Yang, Cuicui]Beijing Univ Technol, Fac Informat Technol, Coll Comp Sci & Technol, Beijing Municipal Key Lab Multimedia & Intelligen, Beijing, Peoples R China
  • [ 2 ] [Ji, Junzhong]Beijing Univ Technol, Fac Informat Technol, Coll Comp Sci & Technol, Beijing Municipal Key Lab Multimedia & Intelligen, Beijing, Peoples R China
  • [ 3 ] [Zhang, Aidong]SUNY Buffalo, Dept Comp Sci & Engn, Buffalo, NY USA

通讯作者信息:

  • 冀俊忠

    [Ji, Junzhong]Beijing Univ Technol, Fac Informat Technol, Coll Comp Sci & Technol, Beijing Municipal Key Lab Multimedia & Intelligen, Beijing, Peoples R China

查看成果更多字段

相关关键词:

来源 :

SOFT COMPUTING

ISSN: 1432-7643

年份: 2018

期: 10

卷: 22

页码: 3395-3416

4 . 1 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:161

被引次数:

WoS核心集被引频次: 4

SCOPUS被引频次: 7

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:1707/4244359
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司