• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Lu, Huili (Lu, Huili.) | Sun, Shaorui (Sun, Shaorui.) (学者:孙少瑞)

收录:

EI Scopus SCIE

摘要:

Compared with organic electrode materials that are used for lithium ion batteries that are constructed using small organic molecules, polymer electrode materials have a better cycling stability, which may be due to their stable long chain structure, and currently, the mechanism of energy storage has not been thoroughly elucidated. In this study, dispersion-corrected density functional theory (DFT-D2) was used to explore the charge/discharge process of polyimide, which is an organic polymer electrode material that could be used in Li-ion batteries. The calculated potentials of PI-1 (polyimide-1) and PI-2 (polyimide-2) are 2.03 and 2.07 V, respectively, and they significantly agree with experimental values, which implies that DFT-D2 is a powerful method to investigate polymer electrodes for use in lithium ion batteries. The calculated potential of pyromellitimide (DPI) is 1.79 V, and DPI is a novel electrode material that has not been reported to date. For each of the three polyimides, lithium ions do not diffuse along the polymer chains but diffuse in the vertical direction, and the migration barriers of PI-1, PI-2, and DPI are 0.47, 0.84, and 0.088 eV, respectively; thus, they have good ionic conductivities (beyond PI-2). Although the calculated band gaps of the three polyimides are all approximately 1.0 eV, the effective electron (or hole) masses are too large, which may limit their electronic conductivities and rate performances. The calculated results show that polyimides are potential Li-ion electrode materials, and this theoretical method could be applied to design novel polymer electrode materials. (C) 2018 Elsevier B.V. All rights reserved.

关键词:

Li-ion battery Theoretical method Polyimide electrode materials vdW correction

作者机构:

  • [ 1 ] [Lu, Huili]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 2 ] [Sun, Shaorui]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China

通讯作者信息:

  • 孙少瑞

    [Sun, Shaorui]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

COMPUTATIONAL MATERIALS SCIENCE

ISSN: 0927-0256

年份: 2018

卷: 146

页码: 119-125

3 . 3 0 0

JCR@2022

ESI学科: MATERIALS SCIENCE;

ESI高被引阀值:260

被引次数:

WoS核心集被引频次: 9

SCOPUS被引频次: 11

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:1369/4271207
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司