• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Wang, Y. Q. (Wang, Y. Q..) | Yue, M. (Yue, M..) (Scholars:岳明) | Wu, D. (Wu, D..) | Zhang, D. T. (Zhang, D. T..) (Scholars:张东涛) | Liu, W. Q. (Liu, W. Q..) (Scholars:刘卫强) | Zhang, H. G. (Zhang, H. G..) (Scholars:张红光) | Du, Y. H. (Du, Y. H..)

Indexed by:

EI Scopus SCIE

Abstract:

The correlation between preparation conditions and microstructure as well as magnetic properties were studied for Sm(Co0.665Fe0.25Cu0.06Zr0.025)(7) magnets. Increase of sintering temperature from 1468 to 1493 K promotes the amalgamation of small grains into big ones, resulting in an enlargement of average grain size from 10 to 25 mm and diffusion of Cu from inner grains to Cu-lean grain boundaries. As a result, the demagnetization curve squareness of the magnets improves substantially, leading to a remarkable enhancement of the maximum energy product from 21.3 to 27.1 MGOe. The coercivity of the magnets drops from 25.3 to 16.0 kOe at the same time, which was verified by the increase of the average domain width from 1.1 mu m in small grains to 2.5 mu m in big grains. It is therefore concluded that tuning of the preparation conditions causes a more homogeneous distribution of Cu, which is crucial for the improvement of magnetic properties. (C) 2018 Elsevier B.V. All rights reserved.

Keyword:

Cu diffusion Grain size Sintering temperature Sm(CoFeCuZr)(z) permanent magnets Domain width Magnetic properties

Author Community:

  • [ 1 ] [Wang, Y. Q.]Beijing Univ Technol, Coll Mat Sci & Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Yue, M.]Beijing Univ Technol, Coll Mat Sci & Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Wu, D.]Beijing Univ Technol, Coll Mat Sci & Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Zhang, D. T.]Beijing Univ Technol, Coll Mat Sci & Engn, Beijing 100124, Peoples R China
  • [ 5 ] [Liu, W. Q.]Beijing Univ Technol, Coll Mat Sci & Engn, Beijing 100124, Peoples R China
  • [ 6 ] [Zhang, H. G.]Beijing Univ Technol, Coll Mat Sci & Engn, Beijing 100124, Peoples R China
  • [ 7 ] [Du, Y. H.]Beijing Univ Technol, Coll Mat Sci & Engn, Beijing 100124, Peoples R China

Reprint Author's Address:

  • 岳明

    [Yue, M.]Beijing Univ Technol, Coll Mat Sci & Engn, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

JOURNAL OF ALLOYS AND COMPOUNDS

ISSN: 0925-8388

Year: 2018

Volume: 741

Page: 495-500

6 . 2 0 0

JCR@2022

ESI Discipline: MATERIALS SCIENCE;

ESI HC Threshold:260

JCR Journal Grade:1

Cited Count:

WoS CC Cited Count: 31

SCOPUS Cited Count: 37

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 1

Online/Total:622/5304712
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.