• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yao, Haipeng (Yao, Haipeng.) | Chen, Xu (Chen, Xu.) (学者:徐晨) | Li, Maozhen (Li, Maozhen.) | Zhang, Peiying (Zhang, Peiying.) | Wang, Luyao (Wang, Luyao.)

收录:

EI Scopus SCIE

摘要:

Network virtualization enables the share of a physical network among multiple virtual networks. Virtual network embedding determines the effectiveness of utilization of network resources. Traditional heuristic mapping algorithms follow static procedures, thus cannot be optimized automatically, leading to suboptimal ranking and embedding decisions. To solve this problem, we introduce a reinforcement learning method to virtual network embedding. In this paper, we design and implement a policy network based on reinforcement learning to make node mapping decisions. We use policy gradient to achieve optimization automatically by training the policy network with the historical data based on virtual network requests. To the best of our knowledge, this work is the first to utilize historical requests data to optimize network embedding automatically. The performance of the proposed embedding algorithm is evaluated in comparison with two other algorithms which use artificial rules based on node ranking. Simulation results show that our reinforcement learning is able to learn from historical requests and outperforms the other two embedding algorithms. (C) 2018 The Author(s). Published by Elsevier B.V.

关键词:

Virtual network embedding Policy gradient Policy network Reinforcement learning

作者机构:

  • [ 1 ] [Yao, Haipeng]Beijing Univ Posts & Telecom, State Key Lab Networking & Switching Technol, Beijing, Peoples R China
  • [ 2 ] [Chen, Xu]Beijing Univ Posts & Telecom, State Key Lab Networking & Switching Technol, Beijing, Peoples R China
  • [ 3 ] [Zhang, Peiying]Beijing Univ Posts & Telecom, State Key Lab Networking & Switching Technol, Beijing, Peoples R China
  • [ 4 ] [Li, Maozhen]Brunel Univ, Dept Elect & Comp Engn, Uxbridge UB8 3PH, Middx, England
  • [ 5 ] [Wang, Luyao]Beijing Univ Technol, Beijing Adv Innovat Ctr Future Internet Technol, Beijing, Peoples R China

通讯作者信息:

  • [Yao, Haipeng]Beijing Univ Posts & Telecom, State Key Lab Networking & Switching Technol, Beijing, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

NEUROCOMPUTING

ISSN: 0925-2312

年份: 2018

卷: 284

页码: 1-9

6 . 0 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:161

JCR分区:1

被引次数:

WoS核心集被引频次: 106

SCOPUS被引频次: 118

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:498/4967266
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司