• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Rehman, Sadaqat Ur (Rehman, Sadaqat Ur.) | Tu, Shanshan (Tu, Shanshan.) | Rehman, Obaid Ur (Rehman, Obaid Ur.) | Huang, Yongfeng (Huang, Yongfeng.) | Magurawalage, Chathura M. Sarathchandra (Magurawalage, Chathura M. Sarathchandra.) | Chang, Chin-Chen (Chang, Chin-Chen.)

收录:

Scopus SCIE PubMed

摘要:

The convolution neural network (CNN) has achieved state-of-the-art performance in many computer vision applications e.g., classification, recognition, detection, etc. However, the global optimization. of CNN training is still a problem. Fast classification and training play a key role in the development of the CNN. We hypothesize that the smoother and optimized the training of a CNN goes, the more efficient the end result becomes. Therefore, in this paper, we implement a modified resilient backpropagation (MRPROP) algorithm to improve the convergence and efficiency of CNN training. Particularly, a tolerant band is introduced to avoid network overtraining, which is incorporated with the global best concept for weight updating criteria to allow the training algorithm of the CNN to optimize its weights more swiftly and precisely. For comparison, we present and analyze four different training algorithms for CNN along with MRPROP, i.e., resilient backpropagation (RPROP), Levenberg-Marquardt (LM), conjugate gradient (CG), and gradient descent with momentum (GDM). Experimental results showcase the merit of the proposed approach on a public face and skin dataset.

关键词:

MRPROP training algorithm CNN optimization image classification

作者机构:

  • [ 1 ] [Rehman, Sadaqat Ur]Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
  • [ 2 ] [Huang, Yongfeng]Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
  • [ 3 ] [Tu, Shanshan]Beijing Univ Technol, Fac Informat Technol, Beijing 100022, Peoples R China
  • [ 4 ] [Rehman, Obaid Ur]Sarhad Univ Sci & IT, Dept Elect Engn, Peshawar 25000, Pakistan
  • [ 5 ] [Magurawalage, Chathura M. Sarathchandra]Univ Essex, Sch Comp Sci & Elect Engn, Colchester CO4 3SQ, Essex, England
  • [ 6 ] [Chang, Chin-Chen]Feng Chia Univ, Dept Informat Engn & Comp Sci, Taichung 407, Taiwan

通讯作者信息:

  • [Tu, Shanshan]Beijing Univ Technol, Fac Informat Technol, Beijing 100022, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

ENTROPY

ISSN: 1099-4300

年份: 2018

期: 4

卷: 20

2 . 7 0 0

JCR@2022

ESI学科: PHYSICS;

ESI高被引阀值:145

被引次数:

WoS核心集被引频次: 46

SCOPUS被引频次: 57

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:234/4299854
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司