• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Yan (Wang, Yan.) | Wang, Yishu (Wang, Yishu.) | Han, Jing (Han, Jing.) | Tan, Shihai (Tan, Shihai.) | Guo, Fu (Guo, Fu.) (学者:郭福)

收录:

EI Scopus SCIE

摘要:

Sn grain orientation in solder matrix has recently been considered as one of the principal failure contributions in lead-free solder joints. Since beta-Sn exhibits high anisotropy, the differences of electromigration behavior of solder joints with various grain orientations are dramatic. With different angle (theta) between the c-axis of Sn grain and the direction of electron flow, the solder joints often demonstrate varying degrees of electromigration-induced damage. The present investigation illustrated significant differences in microstructural features on the surface of Cu reinforced composite solder joints, even with similar angle theta. Two Cu particles reinforced Sn3.5Ag composite solder joints with the similar angle theta of 35A degrees and 40A degrees were selected to investigate the effects of Sn grain c-axis on electromigration under high current stressing for 528 h. A large number of Cu6Sn5 compounds were observed and occupied nearly the whole surface with clear polarization effect in one sample. In contrast, very few Cu6Sn5 were found on the surface of the solder matrix in the other sample after current stressing, and the Cu6Sn5 which was formed after reflow disappeared with subsequent current stressing. Even though polarization effect was not obvious, and the cathode interfacial dissolution was observed on such sample. Systematic study revealed that the angle theta alone was not a sole factor to determine the electromigration damage. It has to be considered along with the coordinate system containing the orientation of the c-axis of the Sn grain, a more dominative factor for the diffusing species.

关键词:

作者机构:

  • [ 1 ] [Wang, Yan]Beijing Univ Technol, Coll Mat Sci & Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Wang, Yishu]Beijing Univ Technol, Coll Mat Sci & Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Han, Jing]Beijing Univ Technol, Coll Mat Sci & Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Tan, Shihai]Beijing Univ Technol, Coll Mat Sci & Engn, Beijing 100124, Peoples R China
  • [ 5 ] [Guo, Fu]Beijing Univ Technol, Coll Mat Sci & Engn, Beijing 100124, Peoples R China

通讯作者信息:

  • 郭福

    [Guo, Fu]Beijing Univ Technol, Coll Mat Sci & Engn, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS

ISSN: 0957-4522

年份: 2018

期: 7

卷: 29

页码: 5954-5960

2 . 8 0 0

JCR@2022

ESI学科: MATERIALS SCIENCE;

ESI高被引阀值:131

JCR分区:3

被引次数:

WoS核心集被引频次: 7

SCOPUS被引频次: 8

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:4043/2929346
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司