• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Meng, Xi (Meng, Xi.) | Rozycki, Pawel (Rozycki, Pawel.) | Qiao, Jun-Fei (Qiao, Jun-Fei.) (学者:乔俊飞) | Wilamowski, Bogdan M. (Wilamowski, Bogdan M..)

收录:

EI Scopus SCIE

摘要:

Radial basis function (RBF) networks, because of their universal approximation ability, have been widely applied to industrial process modeling. In this study, an Improved ErrCor (IErrCor) algorithm-an extension of error correction (ErrCor) algorithm-is proposed, in which compact structure and satisfactory generalization ability can be obtained with only one learning try. First, a second-order-based constructive mechanism guarantees the structure compactness and computational efficiency. Second, different from other algorithms that start with random or constant parameters, optimal initial parameters accelerate the convergence process and improve the convergence performance, making the IErrCor RBF network more stable. Convergence analysis is given to demonstrate and prove the reasonability and effectiveness of the proposed algorithm. Finally, the IErrCor algorithm has been evaluated and compared with several popular advanced learning algorithms such as support vector machine (SVM), extreme learning machine (ELM), and original ErrCor algorithm through a series of benchmark experiments and then been applied to effluent water quality prediction in wastewater treatment process. All the simulation results reveal the outperformance and potentiality of IErrCor RBF network in industrial applications.

关键词:

wastewater treatment process radial basis function (RBF) networks improved error correction (IErrCor) nonlinear system modeling Advanced learning algorithms

作者机构:

  • [ 1 ] [Meng, Xi]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 2 ] [Qiao, Jun-Fei]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 3 ] [Meng, Xi]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Qiao, Jun-Fei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Rozycki, Pawel]Univ Informat Technol & Management, PL-35225 Rzeszow, Poland
  • [ 6 ] [Wilamowski, Bogdan M.]Univ Informat Technol & Management, PL-35225 Rzeszow, Poland
  • [ 7 ] [Wilamowski, Bogdan M.]Auburn Univ, Dept Elect & Comp Engn, Auburn, AL 36849 USA

通讯作者信息:

  • 乔俊飞

    [Qiao, Jun-Fei]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China;;[Qiao, Jun-Fei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China;;[Wilamowski, Bogdan M.]Univ Informat Technol & Management, PL-35225 Rzeszow, Poland;;[Wilamowski, Bogdan M.]Auburn Univ, Dept Elect & Comp Engn, Auburn, AL 36849 USA

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

ISSN: 1551-3203

年份: 2018

期: 3

卷: 14

页码: 931-940

1 2 . 3 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:156

JCR分区:1

被引次数:

WoS核心集被引频次: 78

SCOPUS被引频次: 96

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:2326/4276143
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司