• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wu, Lifang (Wu, Lifang.) (学者:毋立芳) | Xu, Yaowen (Xu, Yaowen.) | Jian, Meng (Jian, Meng.) | Xu, Xiao (Xu, Xiao.) | Qi, Wei (Qi, Wei.)

收录:

EI Scopus SCIE

摘要:

Face liveness detection is a significant research topic in face-based online authentication. The current face liveness detection approaches utilize either static or dynamic features, but not both. In fact, the dynamic and static features have different advantages in face liveness detection. In this paper, we propose a scheme combining dynamic and static features to capture merits of them for face liveness detection. First, the dynamic maps are captured from the inter-frame motion in the video, which investigates motion information of the face in the video. Then, with a Convolutional Neural Network (CNN), the dynamic and static features are extracted from the dynamic maps and the frame images, respectively. Next, in CNN, the fully connected layers containing the dynamic and static features are concatenated to form a fused feature. Finally, the fused features are used to train a binary Support Vector Machine (SVM) classifier, which classifies the frames into two categories, i.e. frame with real or fake face. Experimental results and the corresponding analysis demonstrate that the proposed scheme is capable of discovering face liveness by fusing dynamic and static features and it outperforms the current state-of-the-art face liveness detection approaches.

关键词:

convolutional neural network (CNN) deep learning dynamic features Face liveness detection static features

作者机构:

  • [ 1 ] [Wu, Lifang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Xu, Yaowen]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Jian, Meng]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Xu, Xiao]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Qi, Wei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

通讯作者信息:

  • [Jian, Meng]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING

ISSN: 0219-6913

年份: 2018

期: 2

卷: 16

1 . 4 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:81

JCR分区:4

被引次数:

WoS核心集被引频次: 3

SCOPUS被引频次: 4

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

归属院系:

在线人数/总访问数:2500/3724430
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司