• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Xu, Kun (Xu, Kun.) | Ge, Yaojun (Ge, Yaojun.) | Zhao, Lin (Zhao, Lin.) | Du, Xiuli (Du, Xiuli.) (学者:杜修力)

收录:

EI Scopus SCIE

摘要:

The dynamic stability of vortex-induced vibration (VIV) of circular cylinders has been well investigated. However, there have been few studies on this topic for bridge decks. To fill this gap, this study focuses on the dynamic stability of a VIV system for bridge decks. Some recently developed techniques for nonlinear dynamics are adopted, for example, the state space reconstruction and Poincare mapping techniques. The dynamic stability of the VIV system is assessed by combining analytical and experimental approaches, and a typical bridge deck is analyzed as a case study. Results indicate that the experimentally observed hysteresis phenomenon corresponds to the occurrence of saddle-node bifurcation of the VIV system. Through the method proposed in this study, the evolution of dynamic stability of the VIV system versus wind velocity is established. The dynamic characteristics of the system are further clarified, which offers a useful clue to understanding the VIV system for bridge decks, while providing valuable information for mathematical modeling.

关键词:

wind tunnel experiment bifurcation dynamic stability Vortex-induced vibration bridge deck

作者机构:

  • [ 1 ] [Xu, Kun]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Du, Xiuli]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Ge, Yaojun]Tongji Univ, State Key Lab Disaster Reduct Civil Engn, Shanghai 200092, Peoples R China
  • [ 4 ] [Zhao, Lin]Tongji Univ, State Key Lab Disaster Reduct Civil Engn, Shanghai 200092, Peoples R China

通讯作者信息:

  • [Xu, Kun]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS

ISSN: 0219-4554

年份: 2018

期: 3

卷: 18

3 . 6 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:156

被引次数:

WoS核心集被引频次: 19

SCOPUS被引频次: 21

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 5

在线人数/总访问数:88/3911080
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司