• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Chen, Shujun (Chen, Shujun.) (学者:陈树君) | Xu, Bin (Xu, Bin.) | Jiang, Fan (Jiang, Fan.) (学者:蒋凡)

收录:

EI Scopus SCIE

摘要:

Experiments were carried out in this paper first to clarify the characteristics of a digging process during aluminum alloy of type 5A06 variable polarity plasma arc welding (VPPAW). A special "Blasting type" penetrating phenomenon was observed through measuring the penetrating time by electrical and optical signals. A 3D model was established to numerically investigate heat transfer, fluid flow and surface shape during the digging process. An adaptive heat source was adopted to describe heat transfer process involving deformation of the keyhole tracked by volume-of-fluid (VOF) method. The plasma arc pressure attenuated in a parabolic form as the depth of the keyhole increases. It is found that the weld pool surface becomes concave after sufficient melting of metal. The keyhole depth exhibits responsive changes, which corresponds with the different stages of welding parameters. In the late stage, the depth increase rapidly to fully penetrating state, which shows a "blasting type" penetrating process. The keyhole formation was interpreted by considering energy accumulation and mass conservation of fluid flow. The maximum velocity during digging process always occurs on the keyhole surface, where a vortex in the opposite direction appears inside the weld pool. The calculated penetrating time, keyhole size and fusion line were basically in agreement with the experimental results. (C) 2017 Elsevier Ltd. All rights reserved.

关键词:

5A06 Aluminum alloy Blasting type penetrating phenomenon Digging process Numerical simulation VPPAW

作者机构:

  • [ 1 ] [Chen, Shujun]Beijing Univ Technol, Engn Res Ctr Adv Mfg Technol Automot Components, Minist Educ, Beijing 100124, Peoples R China
  • [ 2 ] [Xu, Bin]Beijing Univ Technol, Engn Res Ctr Adv Mfg Technol Automot Components, Minist Educ, Beijing 100124, Peoples R China
  • [ 3 ] [Jiang, Fan]Beijing Univ Technol, Engn Res Ctr Adv Mfg Technol Automot Components, Minist Educ, Beijing 100124, Peoples R China
  • [ 4 ] [Jiang, Fan]Harbin Inst Technol, State Key Lab Adv Welding & Joining, Harbin 150001, Heilongjiang, Peoples R China

通讯作者信息:

  • 蒋凡

    [Jiang, Fan]Beijing Univ Technol, Engn Res Ctr Adv Mfg Technol Automot Components, Minist Educ, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER

ISSN: 0017-9310

年份: 2018

卷: 118

页码: 1293-1306

5 . 2 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:76

JCR分区:1

被引次数:

WoS核心集被引频次: 27

SCOPUS被引频次: 20

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:657/2898132
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司