• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Xu, Kun (Xu, Kun.) | Ge, Yaojun (Ge, Yaojun.) | Zhao, Lin (Zhao, Lin.) | Du, Xiuli (Du, Xiuli.) (学者:杜修力)

收录:

Scopus SCIE

摘要:

An improved method for calculating the vortex-induced vibration (VIV) of bridges is proposed in this article. In this method, the nonlinear characteristics of the additional aeroelastic effects during VIV versus structural amplitude are first identified through an instantaneous identification method and polynomial fitting. The expression for the aeroelastic effects as a function of structural amplitude is then transformed to the function of structural velocity and/or displacement to calculate the limit-cycle oscillation of the deck. The proposed method was validated through an experiment with different mass-damping conditions. The results indicate that the generalized polynomial model with parameters identified on one particular mass-damping condition can be used to calculate the VIV response of the deck within a certain range of mass-damping values. Based on this method, the VIV performance of a real bridge was calculated by considering the influences of modal shape and spatial coherence of VIV forces. Compared with the traditional method, the applicability of which is limited to a particular mass-damping condition for which the model parameters were estimated, the proposed method will significantly reduce the uncertainty in the prediction of the VIV performance of a real bridge. (C) 2017 American Society of Civil Engineers.

关键词:

Bridge deck Generalized polynomial model Spatial coherence function Mass-damping condition Vortex-induced vibration

作者机构:

  • [ 1 ] [Xu, Kun]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China
  • [ 2 ] [Du, Xiuli]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China
  • [ 3 ] [Ge, Yaojun]Tongji Univ, State Key Lab Disaster Reduct Civil Engn, Shanghai 200092, Peoples R China
  • [ 4 ] [Zhao, Lin]Tongji Univ, State Key Lab Disaster Reduct Civil Engn, Shanghai 200092, Peoples R China

通讯作者信息:

  • [Xu, Kun]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

JOURNAL OF BRIDGE ENGINEERING

ISSN: 1084-0702

年份: 2018

期: 3

卷: 23

3 . 6 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:156

被引次数:

WoS核心集被引频次: 26

SCOPUS被引频次: 28

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:92/3912004
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司