• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Ma, Guowei (Ma, Guowei.) | Li, Zhijian (Li, Zhijian.) | Wang, Li (Wang, Li.)

收录:

EI Scopus SCIE

摘要:

3D printing for cementitious material is an innovative and promising construction method that is rapidly gaining ground in recent years. Utilizing waste or recyclable materials as the primary raw material to produce cementitious material for 3D printing can greatly promote the 3D printing to reach its maximum cost-effective potentials. This paper proposes an environmental friendly cementitious mixture that is compatible with an extrusion based printing process. In this study, six replacement ratio of tailing to sand from 0% to 50% are investigated. A single nozzle printing system is developed and the operational process is illustrated. Experimental tests are performed to determine the printable properties of mixtures containing various content of tailings, including the extrudability, buildability, flowability, open time, fresh and hardened properties, etc. Based on the measurements, the optimal mixture is determined as substituting natural sand with 30% mass ratio of mining tailings, which enables structures achieve a favorable buildability and a relatively high mechanical strength. In particular, the critical value of controlling parameters to achieve sufficient printability are specified. And the compressive and flexural strength of the printed and the casted samples are measured and compared. To conclude the present research, extrudability and buildability coefficients are proposed for optimizing design. (C) 2017 Elsevier Ltd. All rights reserved.

关键词:

Printability 3D printing Buildability Cementitious material Extrudability Fresh property

作者机构:

  • [ 1 ] [Ma, Guowei]Hebei Univ Technol, Sch Civil & Transportat Engn, 5340 Xiping Rd, Tianjin 300401, Peoples R China
  • [ 2 ] [Wang, Li]Hebei Univ Technol, Sch Civil & Transportat Engn, 5340 Xiping Rd, Tianjin 300401, Peoples R China
  • [ 3 ] [Ma, Guowei]Univ Western Australia, Sch Civil Environm & Min Engn, Crawley, WA 6009, Australia
  • [ 4 ] [Li, Zhijian]Beijing Univ Technol, Coll Architecture & Civil Engn, 100 Pingleyuan, Beijing 100124, Peoples R China

通讯作者信息:

  • [Wang, Li]Hebei Univ Technol, Sch Civil & Transportat Engn, 5340 Xiping Rd, Tianjin 300401, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

CONSTRUCTION AND BUILDING MATERIALS

ISSN: 0950-0618

年份: 2018

卷: 162

页码: 613-627

7 . 4 0 0

JCR@2022

ESI学科: MATERIALS SCIENCE;

ESI高被引阀值:260

JCR分区:1

被引次数:

WoS核心集被引频次: 376

SCOPUS被引频次: 446

ESI高被引论文在榜: 10 展开所有

  • 2024-11
  • 2024-11
  • 2024-9
  • 2024-9
  • 2024-7
  • 2024-5
  • 2024-3
  • 2024-1
  • 2023-11
  • 2023-9

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:2494/4260442
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司