• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Feng (Li, Feng.) | Li, Shoumei (Li, Shoumei.) (学者:李寿梅) | Denoeux, Thierry (Denoeux, Thierry.)

收录:

EI Scopus SCIE

摘要:

In evidential clustering, cluster-membership uncertainty is represented by Dempster Shafer mass functions. The EVCLUS algorithm is an evidential clustering procedure for dissimilarity data, based on the assumption that similar objects should be assigned mass functions with low degree of conflict. CEVCLUS is a version of EVCLUS allowing one to use prior information on cluster membership, in the form of pairwise must-link and cannot-link constraints. The original CEVCLUS algorithm was shown to have very good performances, but it was quite slow and limited to small datasets. In this paper, we introduce a much faster and efficient version of CEVCLUS, called k-CEVCLUS, which is both several orders of magnitude faster than EVCLUS and has storage and computational complexity linear in the number of objects, making it applicable to large datasets (around 104 objects). We also propose a new constraint expansion strategy, yielding drastic improvements in clustering results when only a few constraints are given. (C) 2017 Elsevier B.V. All rights reserved.

关键词:

Belief functions Constrained clustering Credal partition Dempster-Shafer theory Evidence theory Instance-level constraints Relational data

作者机构:

  • [ 1 ] [Li, Feng]Beijing Univ Technol, Coll Appl Sci, Beijing, Peoples R China
  • [ 2 ] [Li, Shoumei]Beijing Univ Technol, Coll Appl Sci, Beijing, Peoples R China
  • [ 3 ] [Denoeux, Thierry]Beijing Univ Technol, Coll Appl Sci, Beijing, Peoples R China
  • [ 4 ] [Denoeux, Thierry]Univ Technol Compiegne, CNRS, Sorbonne Univ, Heudiasyc,UMR 7253, Compiegne, France

通讯作者信息:

  • [Denoeux, Thierry]Univ Technol Compiegne, CNRS, Sorbonne Univ, Heudiasyc,UMR 7253, Compiegne, France

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

KNOWLEDGE-BASED SYSTEMS

ISSN: 0950-7051

年份: 2018

卷: 142

页码: 29-44

8 . 8 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:81

JCR分区:1

被引次数:

WoS核心集被引频次: 19

SCOPUS被引频次: 18

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:394/3702860
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司