• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wei, Yixuan (Wei, Yixuan.) | Zhang, Xingxing (Zhang, Xingxing.) | Shi, Yong (Shi, Yong.) | Xia, Liang (Xia, Liang.) | Pan, Song (Pan, Song.) (学者:潘嵩) | Wu, Jinshun (Wu, Jinshun.) | Han, Mengjie (Han, Mengjie.) | Zhao, Xiaoyun (Zhao, Xiaoyun.)

收录:

SSCI EI Scopus SCIE

摘要:

A recent surge of interest in building energy consumption has generated a tremendous amount of energy data, which boosts the data-driven algorithms for broad application throughout the building industry. This article reviews the prevailing data-driven approaches used in building energy analysis under different archetypes and granularities, including those methods for prediction (artificial neural networks, support vector machines, statistical regression, decision tree and genetic algorithm) and those methods for classification (K-mean clustering, self-organizing map and hierarchy clustering). The review results demonstrate that the data-driven approaches have well addressed a large variety of building energy related applications, such as load forecasting and prediction, energy pattern profiling, regional energy-consumption mapping, benchmarking for building stocks, global retrofit strategies and guideline making etc. Significantly, this review refines a few key tasks for modification of the data-driven approaches in the context of application to building energy analysis. The conclusions drawn in this review could facilitate future micro-scale changes of energy use for a particular building through the appropriate retrofit and the inclusion of renewable energy technologies. It also paves an avenue to explore potential in macro-scale energy-reduction with consideration of customer demands. All these will be useful to establish a better long-term strategy for urban sustainability.

关键词:

Building Classification Data driven approach Energy consumption Prediction

作者机构:

  • [ 1 ] [Wei, Yixuan]Univ Nottingham Ningbo China, Res Ctr Fluids & Thermal Engn, Ningbo 315100, Zhejiang, Peoples R China
  • [ 2 ] [Shi, Yong]Univ Nottingham Ningbo China, Res Ctr Fluids & Thermal Engn, Ningbo 315100, Zhejiang, Peoples R China
  • [ 3 ] [Xia, Liang]Univ Nottingham Ningbo China, Res Ctr Fluids & Thermal Engn, Ningbo 315100, Zhejiang, Peoples R China
  • [ 4 ] [Zhang, Xingxing]Dalarna Univ, Sch Ind Technol & Business Studies, S-79188 Falun, Sweden
  • [ 5 ] [Han, Mengjie]Dalarna Univ, Sch Ind Technol & Business Studies, S-79188 Falun, Sweden
  • [ 6 ] [Zhao, Xiaoyun]Dalarna Univ, Sch Ind Technol & Business Studies, S-79188 Falun, Sweden
  • [ 7 ] [Pan, Song]Beijing Univ Technol, Beijing Key Lab Green Built Environm & Energy Eff, Beijing 100124, Peoples R China
  • [ 8 ] [Wu, Jinshun]North China Inst Sci & Technol, Coll Architecture & Civil Engn, Langfang 065201, Hebei, Peoples R China

通讯作者信息:

  • [Shi, Yong]Univ Nottingham Ningbo China, Res Ctr Fluids & Thermal Engn, Ningbo 315100, Zhejiang, Peoples R China;;[Zhang, Xingxing]Dalarna Univ, Sch Ind Technol & Business Studies, S-79188 Falun, Sweden

查看成果更多字段

相关关键词:

来源 :

RENEWABLE & SUSTAINABLE ENERGY REVIEWS

ISSN: 1364-0321

年份: 2018

卷: 82

页码: 1027-1047

1 5 . 9 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:76

JCR分区:1

被引次数:

WoS核心集被引频次: 474

SCOPUS被引频次: 569

ESI高被引论文在榜: 17 展开所有

  • 2022-3
  • 2022-1
  • 2021-11
  • 2021-9
  • 2021-7
  • 2021-5
  • 2021-3
  • 2021-1
  • 2020-11
  • 2020-9
  • 2020-7
  • 2020-5
  • 2020-3
  • 2020-1
  • 2019-11
  • 2019-9
  • 2018-11

万方被引频次:

中文被引频次:

近30日浏览量: 5

在线人数/总访问数:2706/3727618
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司