• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Jing (Zhang, Jing.) (学者:张菁) | Chen, Lu (Chen, Lu.) | Zhuo, Li (Zhuo, Li.) | Liang, Xi (Liang, Xi.) | Li, Jiafeng (Li, Jiafeng.)

收录:

EI Scopus SCIE

摘要:

Hyperspectral images are one of the most important fundamental and strategic information resources, imaging the same ground object with hundreds of spectral bands varying from the ultraviolet to the microwave. With the emergence of huge volumes of high-resolution hyperspectral images produced by all sorts of imaging sensors, processing and analysis of these images requires effective retrieval techniques. How to ensure retrieval accuracy and efficiency is a challenging task in the field of hyperspectral image retrieval. In this paper, an efficient hyperspectral image retrieval method is proposed. In principle, our method includes the following steps: (1) in order to make powerful representations for hyperspectral images, deep spectral-spatial features are extracted with the Deep Convolutional Generative Adversarial Networks (DCGAN) model; (2) considering the higher dimensionality of deep spectral-spatial features, t-Distributed Stochastic Neighbor Embedding-based Nonlinear Manifold (t-SNE-based NM) hashing is utilized to make dimensionality reduction by learning compact binary codes embedded on the intrinsic manifolds of deep spectral-spatial features for balancing between learning efficiency and retrieval accuracy; and (3) multi-index hashing in Hamming space is measured to find similar hyperspectral images. Five comparative experiments are conducted to verify the effectiveness of deep spectral-spatial features, dimensionality reduction of t-SNE-based NM hashing, and similarity measurement of multi-index hashing. The experimental results using NASA datasets show that our hyperspectral image retrieval method can achieve comparable and superior performance with less computational time.

关键词:

t-SNE-based NM hashing DCGAN deep spectral-spatial feature multi-index hashing hyperspectral image retrieval

作者机构:

  • [ 1 ] [Zhang, Jing]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 2 ] [Chen, Lu]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 3 ] [Zhuo, Li]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 4 ] [Liang, Xi]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 5 ] [Li, Jiafeng]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 6 ] [Zhuo, Li]Collaborat Innovat Ctr Elect Vehicles Beijing, Beijing 100124, Peoples R China

通讯作者信息:

  • 张菁

    [Zhang, Jing]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

REMOTE SENSING

ISSN: 2072-4292

年份: 2018

期: 2

卷: 10

5 . 0 0 0

JCR@2022

ESI学科: GEOSCIENCES;

ESI高被引阀值:139

JCR分区:1

被引次数:

WoS核心集被引频次: 30

SCOPUS被引频次: 36

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 7

在线人数/总访问数:629/3896743
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司