• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Boyue (Wang, Boyue.) | Hu, Yongli (Hu, Yongli.) (学者:胡永利) | Gao, Junbin (Gao, Junbin.) | Sun, Yanfeng (Sun, Yanfeng.) (学者:孙艳丰) | Yin, Baocai (Yin, Baocai.) (学者:尹宝才)

收录:

EI Scopus SCIE

摘要:

Clustering is one of the fundamental topics in data mining and pattern recognition. As a prospective clustering method, the subspace clustering has made considerable progress in recent researches, e.g., sparse subspace clustering (SSC) and low rank representation (LRR). However, most existing subspace clustering algorithms are designed for vectorial data from linear spaces, thus not suitable for high-dimensional data with intrinsic non-linear manifold structure. For high-dimensional or manifold data, few research pays attention to clustering problems. The purpose of clustering on manifolds tends to cluster manifold-valued data into several groups according to the mainfold-based similarity metric. This article proposes an extended LRR model for manifold-valued Grassmann data that incorporates prior knowledge by minimizing partial sum of singular values instead of the nuclear norm, namely Partial Sum minimization of Singular Values Representation (GPSSVR). The new model not only enforces the global structure of data in low rank, but also retains important information by minimizing only smaller singular values. To further maintain the local structures among Grassmann points, we also integrate the Laplacian penalty with GPSSVR. The proposed model and algorithms are assessed on a public human face dataset, some widely used human action video datasets and a real scenery dataset. The experimental results show that the proposed methods obviously outperform other state-of-the-art methods.

关键词:

Low rank representation Laplacian matrix partial sum minimization of singular values Grassmann manifolds subspace clustering

作者机构:

  • [ 1 ] [Wang, Boyue]Beijing Univ Technol, Fac Informat Technol, Beijing Municipal Key Lab Multimedia & Intelligen, Beijing Adv Innovat Ctr Future Internet Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Hu, Yongli]Beijing Univ Technol, Fac Informat Technol, Beijing Municipal Key Lab Multimedia & Intelligen, Beijing Adv Innovat Ctr Future Internet Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Sun, Yanfeng]Beijing Univ Technol, Fac Informat Technol, Beijing Municipal Key Lab Multimedia & Intelligen, Beijing Adv Innovat Ctr Future Internet Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Gao, Junbin]Univ Sydney, Discipline Business Analyt, Business Sch, Sydney, NSW 2006, Australia
  • [ 5 ] [Yin, Baocai]Beijing Univ Technol, Dalian Univ Technol, Beijing Adv Innovat Ctr Future Internet Technol, Beijing, Peoples R China
  • [ 6 ] [Yin, Baocai]Dalian Univ Technol, Fac Elect Informat & Elect Engn, Coll Comp Sci & Technol, Dalian 116620, Peoples R China

通讯作者信息:

  • [Wang, Boyue]Beijing Univ Technol, Fac Informat Technol, Beijing Municipal Key Lab Multimedia & Intelligen, Beijing Adv Innovat Ctr Future Internet Technol, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA

ISSN: 1556-4681

年份: 2018

期: 1

卷: 12

3 . 6 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:161

被引次数:

WoS核心集被引频次: 5

SCOPUS被引频次: 9

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 5

在线人数/总访问数:138/3903472
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司