• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Lei, Jun (Lei, Jun.) | Zhang, Chuanzeng (Zhang, Chuanzeng.)

收录:

EI Scopus SCIE

摘要:

Based on the concept of the hoop field intensity factors of an initial crack prior to any kink, an apparent hoop mechanical (strain) energy release rate (MERR) is defined to approximate the MERR of a piezoelectric crack with an infinitesimal kink at any arbitrary angle. The validity and the efficiency of the simplified approximation are examined by numerical examples using the boundary element method (BEM). The generalized crack-opening-displacements or displacement jumps are computed by the traction boundary integral equations (BIEs). By using the displacement extrapolation method, the crack-tip field intensity factors of any arbitrarily kinked crack in linear piezoelectric materials are obtained and the BEM results are validated by comparing them with the available reference analytical results. Then, the differences between the conventional field intensity factors and MERR of an infinitesimally kinked crack and the hoop field intensity factors and hoop MERR of the main crack prior to any kink are numerically analyzed. Finally, the crack propagation in an infinite linear piezoelectric material is numerically simulated. The paths of the crack growth are predicted by adopting four different fracture criteria, namely, the maximum hoop stress intensity factor (SIF) and MERR fracture criteria for the main crack-tip before the next propagation, and the maximum K-1 and MERR fracture criteria for the kinked tip of the main crack with an infinitesimal branch at an arbitrary kinking angle evaluated by using a trial crack extension technique. The comparisons among these results show that the present simplified approximation can efficiently provide a sufficient accuracy for numerical simulation of crack growth in linear piezoelectric materials. (C) 2017 Elsevier Ltd. All rights reserved.

关键词:

Piezoelectric materials Mechanical energy release rate Fracture criteria Traction BIEs Crack problems

作者机构:

  • [ 1 ] [Lei, Jun]Beijing Univ Technol, Dept Engn Mech, Beijing 100124, Peoples R China
  • [ 2 ] [Zhang, Chuanzeng]Univ Siegen, Dept Civil Engn, D-57068 Siegen, Germany

通讯作者信息:

  • [Lei, Jun]Beijing Univ Technol, Dept Engn Mech, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ENGINEERING FRACTURE MECHANICS

ISSN: 0013-7944

年份: 2018

卷: 188

页码: 36-57

5 . 4 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:156

JCR分区:1

被引次数:

WoS核心集被引频次: 12

SCOPUS被引频次: 14

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:739/4293220
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司