• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Cheng, Jin (Cheng, Jin.) | Song, Yong (Song, Yong.) | Ye, Qing (Ye, Qing.) (学者:叶青) | Cheng, Shuiyuan (Cheng, Shuiyuan.) (学者:程水源) | Kang, Tianfang (Kang, Tianfang.) (学者:康天放) | Dai, Hongxing (Dai, Hongxing.) (学者:戴洪兴)

收录:

EI Scopus SCIE

摘要:

The Ti-pillared clay-supported vanadia-ceria (yV4Ce/Ti-PILC, y was the V weight percehtage (wt%), Ce weight percentage = 4 wt%) samples were prepared using the impregnation method. The catalytic activity for the selective catalytic reduction of NOx with NH3 (NH3-SCR) decreased in the order of 1V4Ce/Ti-PILC >4Ce/Ti-PILC > 2V4Ce/Ti-PILC > 1 V/Ti-PILC >1V4Ce/Clay > Ti-PILC > Clay, with the 1V4Ce/Ti-PILC sample exhibiting the best activity (NOx conversion >90% at 280-450 degrees C). Physiochemical properties of the samples were investigated by means of XRD, N-2 absorption-desorption, SEM, H-2-TPR, NH3-TPD, XPS, and in situ DRIFT techniques. The vanadia was uniformly dispersed on the Ti-PILC support, while the ceria were mainly present in CeO2. The Ti-pillared support was suitable for dispersing the V-Ce composite oxides. The strong interaction between vanadia and ceria led to increased H-2 consumption and high temperature reduction. The Ce4+/Ce3+ and V5+/V4+ redox cycle (V4+ + Ce4+ <-> V5++ Ce3+) accounted for the excellent NH3-SCR catalytic performance of the 1V4Ce/Ti-PILC sample. The doping of a proper amount of vanadia could promote formation of Ce3+ on the surface of 1V4Ce/Ti-PILC, and the formed Ce3+ could generate a more amount of the chemisorbed oxygen species that favored the NH3-SCR reaction. Furthermore, the 1V4Ce/Ti-PILC sample possessed high catalytic acidity and strong NH3 adsorption ability, which were responsible for high NO conversion in a wide range of temperatures. The NH3-SCR reaction on the 4Ce/Ti-PILC and 1V4Ce/Ti-PILC samples obeyed the Langmuir-Hinshelwood (L-H) and Eley-Rideal (E-R) mechanisms, with the former being dominant. (C) 2017 Elsevier B.V. All rights reserved.

关键词:

Reaction mechanism Ti-pillared clay V-Ce mixed oxide NH3-SCR In situ DRIFT

作者机构:

  • [ 1 ] [Cheng, Jin]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Environm Sci, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 2 ] [Song, Yong]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Environm Sci, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 3 ] [Ye, Qing]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Environm Sci, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 4 ] [Cheng, Shuiyuan]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Environm Sci, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 5 ] [Kang, Tianfang]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Environm Sci, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 6 ] [Dai, Hongxing]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Beijing Key Lab Green Catalysis & Separat,Key Lab, Beijing 100124, Peoples R China
  • [ 7 ] [Dai, Hongxing]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Lab Catalysis Chem & Nanosci, Beijing 100124, Peoples R China

通讯作者信息:

  • 叶青 戴洪兴

    [Ye, Qing]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Environm Sci, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China;;[Dai, Hongxing]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Beijing Key Lab Green Catalysis & Separat,Key Lab, Beijing 100124, Peoples R China;;[Dai, Hongxing]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Lab Catalysis Chem & Nanosci, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

MOLECULAR CATALYSIS

ISSN: 2468-8231

年份: 2018

卷: 445

页码: 111-123

4 . 6 0 0

JCR@2022

被引次数:

WoS核心集被引频次: 24

SCOPUS被引频次: 23

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:205/3880235
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司