• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Yutao (Liu, Yutao.) | Zhai, Guangtao (Zhai, Guangtao.) | Gu, Ke (Gu, Ke.) (学者:顾锞) | Liu, Xianming (Liu, Xianming.) | Zhao, Debin (Zhao, Debin.) | Gao, Wen (Gao, Wen.)

收录:

EI Scopus SCIE

摘要:

The free-energy principle in recent studies of brain theory and neuroscience models the perception and understanding of the outside scene as an active inference process, in which the brain tries to account for the visual scene with an internal generative model. Specifically, with the internal generative model, the brain yields corresponding predictions for its encountered visual scenes. Then, the discrepancy between the visual input and its brain prediction should be closely related to the quality of perceptions. On the other hand, sparse representation has been evidenced to resemble the strategy of the primary visual cortex in the brain for representing natural images. With the strong neurobiological support for sparse representation, in this paper, we approximate the internal generative model with sparse representation and propose an image quality metric accordingly, which is named FSI (free-energy principle and sparse representation-based index for image quality assessment). In FSI, the reference and distorted images are, respectively, predicted by the sparse representation at first. Then, the difference between the entropies of the prediction discrepancies is defined to measure the image quality. Experimental results on four large-scale image databases confirm the effectiveness of the FSI and its superiority over representative image quality assessment methods. The FSI belongs to reduced-reference methods, and it only needs a single number from the reference image for quality estimation.

关键词:

visual saliency image quality assessment (IQA) reduced-reference (RR) Free-energy principle sparse representation

作者机构:

  • [ 1 ] [Liu, Yutao]Harbin Inst Technol, Sch Comp Sci & Technol, Harbin 150001, Heilongjiang, Peoples R China
  • [ 2 ] [Liu, Xianming]Harbin Inst Technol, Sch Comp Sci & Technol, Harbin 150001, Heilongjiang, Peoples R China
  • [ 3 ] [Zhao, Debin]Harbin Inst Technol, Sch Comp Sci & Technol, Harbin 150001, Heilongjiang, Peoples R China
  • [ 4 ] [Gao, Wen]Harbin Inst Technol, Sch Comp Sci & Technol, Harbin 150001, Heilongjiang, Peoples R China
  • [ 5 ] [Zhai, Guangtao]Shanghai Jiao Tong Univ, Inst Image Commun & Informat Proc, Shanghai 200240, Peoples R China
  • [ 6 ] [Gu, Ke]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 7 ] [Gao, Wen]Peking Univ, Natl Engn Lab Video Technol, Sch Elect Engn & Comp Sci, Beijing 100871, Peoples R China
  • [ 8 ] [Gao, Wen]Peking Univ, Key Lab Machine Percept, Sch Elect Engn & Comp Sci, Beijing 100871, Peoples R China

通讯作者信息:

  • [Liu, Xianming]Harbin Inst Technol, Sch Comp Sci & Technol, Harbin 150001, Heilongjiang, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE TRANSACTIONS ON MULTIMEDIA

ISSN: 1520-9210

年份: 2018

期: 2

卷: 20

页码: 379-391

7 . 3 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:161

JCR分区:1

被引次数:

WoS核心集被引频次: 103

SCOPUS被引频次: 121

ESI高被引论文在榜: 2 展开所有

  • 2019-11
  • 2019-9

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:2784/4253128
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司