• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Qu, Y. (Qu, Y..) | Ji, J. (Ji, J..) | Liang, P. (Liang, P..) | Gao, M. (Gao, M..)

收录:

Scopus PKU CSCD

摘要:

To solve the classification model overfitting problem caused by the high dimension and small sample properties of functional magnetic resonance imaging (fMRI) data, a feature selection framework of whole-brain fMRI data combining L1-norm regularization and L2-norm regularization in softmax regression is proposed. Firstly, the whole brain is divided into the region of interest (ROI) and the region of non-interest (RONI) in terms of the characteristics of brain cognition. Then, L2-norm regularization shrinking the weighting coefficients is used to model all voxels in ROI while L1-norm regularization with a sparse effect is employed for modeling the activated voxels in RONI. Finally, the regularized softmax regression model of whole-brain fMRI data is constructed by integrating all voxels in ROI and the activated voxels in RONI. The experimental results on Haxby datasets show that the regularization strategies of L2-norm and L1-norm effectively improve the whole-brain classification performance compared to some other methods. © 2016, Science Press. All right reserved.

关键词:

Functional magnetic resonance imaging (fMRI); Overfitting; Regularization; Softmax regression

作者机构:

  • [ 1 ] [Qu, Y.]Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, College of Computer Science, Beijing University of Technology, Beijing, 100124, China
  • [ 2 ] [Ji, J.]Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, College of Computer Science, Beijing University of Technology, Beijing, 100124, China
  • [ 3 ] [Liang, P.]Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
  • [ 4 ] [Gao, M.]Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, College of Computer Science, Beijing University of Technology, Beijing, 100124, China

通讯作者信息:

  • [Ji, J.]Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, College of Computer Science, Beijing University of TechnologyChina

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Pattern Recognition and Artificial Intelligence

ISSN: 1003-6059

年份: 2016

期: 7

卷: 29

页码: 641-649

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 2

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:876/3906997
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司