• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, T. (Zhang, T..) (学者:张涛) | Li, Y.-J. (Li, Y.-J..) | Hu, H.-H. (Hu, H.-H..) | Zhang, Y.-H. (Zhang, Y.-H..) (学者:张延华)

收录:

Scopus PKU CSCD

摘要:

To improve gender classification accuracy, we propose a cross-connected convolutional neural network (CCNN) based on traditional convolutional neural networks (CNN). The proposed model is a 9-layer structure composed of an input layer, six hidden layers (i.e., three convolutional layers alternating with three pooling layers), a fully-connected layer and an output layer, where the second pooling layer is allowed to directly connect to the fully-connected layer across two layers. Experimental results in ten face datasets show that our model can achieve gender classification accuracies not lower than those of the convolutional neural networks. Copyright © 2016 Acta Automatica Sinica. All rights reserved.

关键词:

Convolutional neural network (CNN); Cross-connected convolutional neural network (CCNN); Cross-layer connection; Gender classification

作者机构:

  • [ 1 ] [Zhang, T.]Computer School, Beijing University of Technology, Beijing, 100124, China
  • [ 2 ] [Li, Y.-J.]Computer School, Beijing University of Technology, Beijing, 100124, China
  • [ 3 ] [Hu, H.-H.]Computer School, Beijing University of Technology, Beijing, 100124, China
  • [ 4 ] [Zhang, Y.-H.]Computer School, Beijing University of Technology, Beijing, 100124, China

通讯作者信息:

  • 张涛

    [Zhang, T.]Computer School, Beijing University of TechnologyChina

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Acta Automatica Sinica

ISSN: 0254-4156

年份: 2016

期: 6

卷: 42

页码: 856-865

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 15

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:199/4299765
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司