• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Qiao, Jun-Fei (Qiao, Jun-Fei.) (学者:乔俊飞) | Hou, Ying (Hou, Ying.) | Zhang, Lu (Zhang, Lu.) | Han, Hong-Gui (Han, Hong-Gui.) (学者:韩红桂)

收录:

EI Scopus SCIE

摘要:

This study investigates an adaptive fuzzy neural network control system for the multiobjective operation of wastewater treatment process (WWTP) with standard effluent quality (EQ) as well as low energy consumption (EC). The control system consists of an optimization module with the adaptive multiobjective differential evolution (AMODE) algorithm and a control module with the adaptive fuzzy neural network (AFNN). First, an AMODE algorithm, using the adaptive adjustment strategies for selecting the suitable scaling factor and crossover rate, is developed to optimize all objectives simultaneously. Then, the optimal set-points of the dissolved oxygen concentration in the fifth tank (S-O5) and the nitrogen nitrate concentration in the second anoxic tank (S-NO2) of WWTP can be obtained by the AMODE algorithm. Second, an AFNN controller, based on an adaptive second order algorithm, is employed to trace the set-points of S-O5 and S-NO2 for achieving the process performance. Finally, the proposed control system is applied on the Benchmark Simulation Model 1 (BSM1). The performance comparison with other algorithms indicates that the proposed control system yields better effluent qualities and lower average operation consumption. (C) 2017 Elsevier B.V. All rights reserved.

关键词:

Wastewater treatment process Multiobjective optimal control Adaptive fuzzy neural network control system Adaptive multiobjective differential evolution

作者机构:

  • [ 1 ] [Qiao, Jun-Fei]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Han, Hong-Gui]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Hou, Ying]Beijing Univ Technol, Fac Informat Technol, Coll Automat, Beijing, Peoples R China
  • [ 4 ] [Zhang, Lu]Beijing Univ Technol, Fac Informat Technol, Coll Automat, Beijing, Peoples R China

通讯作者信息:

  • [Hou, Ying]Beijing Univ Technol, Fac Informat Technol, Coll Automat, Beijing, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

NEUROCOMPUTING

ISSN: 0925-2312

年份: 2018

卷: 275

页码: 383-393

6 . 0 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:161

JCR分区:1

被引次数:

WoS核心集被引频次: 85

SCOPUS被引频次: 97

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 6

在线人数/总访问数:183/3911529
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司