收录:
摘要:
A bench-scale biological nitrogen and phosphorus removal membrane bioreactor (UCT-MBR) process was operated to treat carbon-limited municipal wastewater regarding on the influences of ferric chloride (FeCl3·6H2O) addition on the process performance and membrane fouling. FT-IR (Fourier translation infrared spectroscopy, FT-IR) and EDX (energy dispersive X-Ray, EDX) were used to analyze membrane surface foulants. The results show that the phosphorus removal is strengthened with the addition of ferric chloride. The highest removal efficiency of TP (total phosphorus, TP) can be obtained in UCT-MBR process under the condition of the optimal-phosphorus-removal dosing (dosage of 1.8 mmol/L) combined with the biological phosphorus removal process. Membrane fouling is alleviated with the addition of ferric chloride mainly through increasing the sludge particle size and reducing the SMP (soluble microbial products, SMP) fraction concentration with relative molecular mass above 105. The lowest membrane fouling rate in the UCT-MBR process can be obtained under the condition of the optimal-sludge-filterability dosing (dosage of 2.6 mmol/L), while the optimal-sludge-filterability dosing exhibits a strong influence on sludge bioactivities and reduces the sludge capabilities of nitrification and phosphorus release/uptake, which limits the performance of nitrogen and phosphorus removal. The ferric chloride addition has no effects on their compositions. Moreover, the influence of inorganic fouling on membrane fouling rate is found to be smaller than that of organic fouling. Besides, lag effects are found for inorganic elements combined with biopolymers to form a dense cake layer. © 2016, Central South University of Technology. All right reserved.
关键词:
通讯作者信息:
电子邮件地址: