收录:
摘要:
In the present work, we investigated the crystal structure, electronic structure, optical properties and electrical properties of the wurtzite type ZnO oxide at exoteric pressures of 500 GPa based on the density functional theory ab-initio calculations framework. The results show that the lattice of ZnO is decreased at 500 GPa and, at the same time, the Zn-O bond length and the O-Zn-O bond angle are decreased while, however, the compressibility varies in different crystal directions and the symmetry remains the same. The band gap is direct at 500 GPa with the band gap value rising to 1.65 eV. The number of the energy bands decreases and so does the density of states. An obvious localization effect of the electrons is observed at 500 GPa. The absorption peaks move towards the high energy region, and the absorption decreases for low energy photon and increases for the high energy photon. The results from our analysis show that the density, effective mass and the mobility of the carriers near Fermi level decrease under 500 GPa, leading to a reduced performance of their electrical properties. © 2016, Chinese Journal of High Pressure Physics. All right reserved.
关键词:
通讯作者信息:
电子邮件地址: