收录:
摘要:
This study compares the microstructure and tensile properties of Ti6Al4V components fabricated by laser direct metal deposition (LDMD) additive manufacturing (AM) in the transverse and longitudinal directions. The results show anisotropic tensile properties with the transverse direction having high tensile and fracture strengths and the longitudinal direction having a high elongation and reduction of cross section. The anisotropic mechanical properties are attributed to the anisotropic microstructural distribution. The transverse tensile specimen is composed of short columnar prior-beta grains which grow perpendicular to the tensile direction, and have a lamellar structure. Along the beta grain boundary, alpha(GB) and large alpha colonies were identified. However, the longitudinal specimen shows that the long beta structure is parallel to the tensile axis and that the microstructure is composed of basket-woven alpha phases with shorter alpha plates and smaller colony sizes compared with those in the transverse specimen. The fracture mechanism induced by the anisotropic microstructure along the transverse and longitudinal directions was compared by examining the fracture process in real-time using uniaxial in-situ scanning electron microscopy (SEM) tensile testing. The results show that shear fracture, which is caused by the vertical beta grain boundaries and large alpha colonies with long alpha plates, occurs in the transverse specimen. The shear mode is the main reason behind the enhanced tensile strength and fracture strength due to the high resistance to microcrack propagation. However, in the longitudinal specimens, symmetric necking behavior due to the fine a grains resulted in uniform deformation of the grains on both sides of the grain boundaries, inducing greater elongation.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING
ISSN: 0921-5093
年份: 2018
卷: 712
页码: 199-205
6 . 4 0 0
JCR@2022
ESI学科: MATERIALS SCIENCE;
ESI高被引阀值:260
JCR分区:1