• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Rehman, Obaid Ur (Rehman, Obaid Ur.) | Tu, Shanshan (Tu, Shanshan.) | Khan, Shafiullah (Khan, Shafiullah.) | Khan, Hashmat (Khan, Hashmat.) | Yang, Shiyou (Yang, Shiyou.)

收录:

EI Scopus SCIE

摘要:

Quantum particle swarm optimization (QPSO) is a swarm intelligence method that has been successfully applied to solve a wide scope of electromagnetic inverse problems. The method encounters into local optima and insufficient diversity at the later phase of optimization. To address this type of issue, a new methodology is used to select the fittest particle, and a novel mutation mechanism is introduced, in which a mutation technique is applied on the global best particle to avoid the population from assembling and facilitating the individual to avoid the local optimum easily. In addition, a parameter updating strategy is proposed, which facilitates the optimizer to maintain a good balance between local and global searches. To demonstrate the merit and efficiency of the proposed methodology, the evaluated results from the case studies are presented.

关键词:

mutation global optimization Electromagnetic design problem quantum mechanics

作者机构:

  • [ 1 ] [Rehman, Obaid Ur]Sarhad Univ Sci & IT, Dept Elect Engn, Peshawar, Pakistan
  • [ 2 ] [Khan, Hashmat]Sarhad Univ Sci & IT, Dept Elect Engn, Peshawar, Pakistan
  • [ 3 ] [Tu, Shanshan]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Khan, Shafiullah]Islamia Coll Univ, Dept Elect, Peshawar 25000, Kpk, Pakistan
  • [ 5 ] [Yang, Shiyou]Zhejiang Univ, Coll Elect Engn, Hangzhou 310027, Zhejiang, Peoples R China

通讯作者信息:

  • [Tu, Shanshan]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS

ISSN: 1383-5416

年份: 2018

期: 3

卷: 58

页码: 347-357

0 . 6 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:156

JCR分区:4

被引次数:

WoS核心集被引频次: 8

SCOPUS被引频次: 8

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:371/3908068
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司