• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhu, J. (Zhu, J..) | Song, W. (Song, W..) | Gao, Y. (Gao, Y..) | Sun, P. (Sun, P..)

收录:

Scopus PKU CSCD

摘要:

Atomic clock difference prediction is the key step of atomic clock time scale calculation and atomic clock control. Good prediction of the clock difference can significantly improve the precision of the atomic clock time scale and atomic clock control. In order to further improve the prediction precision of the clock difference of the hydrogen atomic clock, this paper presents an improved BP neural network algorithm to predict the atomic clock difference, which is verified by the actual hydrogen atomic clock data of the time-keeping laboratory in National Institute of Metrology, China. The verification results show that compared with the clock difference prediction algorithms based on linear regression and SVM used at present, the improved BP neural network clock difference prediction algorithm significantly improves the prediction precision of hydrogen atomic clock, and has a good promoting effect on improving the precision of atomic clock time scale calculation and atomic clock control. © 2016, Science Press. All right reserved.

关键词:

Clock difference; Hydrogen atomic clock; Improved BP neural network; Prediction algorithm

作者机构:

  • [ 1 ] [Zhu, J.]College of Electronic Information & Control Engineering, Beijing University of Technology, Beijing, 100124, China
  • [ 2 ] [Song, W.]College of Electronic Information & Control Engineering, Beijing University of Technology, Beijing, 100124, China
  • [ 3 ] [Gao, Y.]National Institute of Metrology, Beijing, 100013, China
  • [ 4 ] [Sun, P.]College of Electronic Information & Control Engineering, Beijing University of Technology, Beijing, 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Chinese Journal of Scientific Instrument

ISSN: 0254-3087

年份: 2016

期: 2

卷: 37

页码: 454-460

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:56/3267307
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司