• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Chen, Wenbin (Chen, Wenbin.) | Shao, Yanling (Shao, Yanling.) | Wang, Yanling (Wang, Yanling.) | Zhang, Quan (Zhang, Quan.) | Liu, Yi (Liu, Yi.) | Yao, Linhong (Yao, Linhong.) | Chen, Yan (Chen, Yan.) | Yang, Guanru (Yang, Guanru.) | Gui, Zhiguo (Gui, Zhiguo.)

收录:

EI Scopus SCIE

摘要:

Low-dose computed tomography (LDCT) images are polluted by mottle noise and streak artifacts. To improve LDCT images quality, this paper proposes a novel total variation (NTV) model. A weighted coefficient of the regularization term of NTV model is constructed by standard deviation, gray-level probability and gradient magnitude to smooth LDCT images adaptively, since the standard deviation and the gray-level probability of detail region are higher than that of the noisy background, and the gradient magnitude of edges is higher than that of the noisy background. Besides, to preserve details and edges effectively, the fidelity term of the proposed NTV model is constructed by the block-matching 3d filter because it performs well in details and edges preservation. The experiments are performed on the computer simulated phantom and the actual phantom. Compared with several other competitive methods, both subjective visual effect and objective evaluation criteria show that the proposed NTV model can improve LDCT images quality more effectively such as noise and artifacts suppression, details, and edges preservation.

关键词:

image denoising total variation edges and details preservation weighted coefficient Low-dose CT

作者机构:

  • [ 1 ] [Chen, Wenbin]North Univ China, Shanxi Prov Key Lab Biomed Imaging & Big Data, Taiyuan 030051, Shanxi, Peoples R China
  • [ 2 ] [Zhang, Quan]North Univ China, Shanxi Prov Key Lab Biomed Imaging & Big Data, Taiyuan 030051, Shanxi, Peoples R China
  • [ 3 ] [Liu, Yi]North Univ China, Shanxi Prov Key Lab Biomed Imaging & Big Data, Taiyuan 030051, Shanxi, Peoples R China
  • [ 4 ] [Chen, Yan]North Univ China, Shanxi Prov Key Lab Biomed Imaging & Big Data, Taiyuan 030051, Shanxi, Peoples R China
  • [ 5 ] [Gui, Zhiguo]North Univ China, Shanxi Prov Key Lab Biomed Imaging & Big Data, Taiyuan 030051, Shanxi, Peoples R China
  • [ 6 ] [Shao, Yanling]North Univ China, Sch Sci, Taiyuan 030051, Shanxi, Peoples R China
  • [ 7 ] [Yao, Linhong]North Univ China, Sch Sci, Taiyuan 030051, Shanxi, Peoples R China
  • [ 8 ] [Wang, Yanling]Shanxi Univ Finance & Econ, Sch Informat Management, Taiyuan 030006, Shanxi, Peoples R China
  • [ 9 ] [Yang, Guanru]Beijing Univ Technol, Sch Informat & Commun Engn, Beijing 100124, Peoples R China

通讯作者信息:

  • [Gui, Zhiguo]North Univ China, Shanxi Prov Key Lab Biomed Imaging & Big Data, Taiyuan 030051, Shanxi, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

IEEE ACCESS

ISSN: 2169-3536

年份: 2018

卷: 6

页码: 78892-78903

3 . 9 0 0

JCR@2022

JCR分区:1

被引次数:

WoS核心集被引频次: 12

SCOPUS被引频次: 13

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:533/4957779
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司