• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yang, Cuili (Yang, Cuili.) | Zhu, Xinxin (Zhu, Xinxin.) | Ahmad, Zohaib (Ahmad, Zohaib.) | Wang, Lei (Wang, Lei.) | Qiao, Junfei (Qiao, Junfei.) (学者:乔俊飞)

收录:

EI Scopus SCIE

摘要:

In most echo state networks (ESNs), the training error typically decreases as the network size increases, and thus the overfitting issue is widely existed. To solve this problem, an incremental ESN (IESN) is proposed by incorporating the leave-one-out cross-validation (LOO-CV) and the regularization method. First, the LOO-CV error is used to automatically identify the network architecture such that the overfitting problem is avoided to some extent. Second, the regularization technique is used to solve the ill-posed problem, and thus the IESN owns good robustness property. Third, the output weights are incrementally calculated by the fast SVD updating algorithm to reduce the ESN training time. Moreover, the stability and convergence of IESN are discussed to ensure its successful application. Simulation results demonstrate that the proposed IESN requires fewer reservoir nodes yet obtains much better performance than other existing ESNs.

关键词:

singular value decomposition (SVD) incremental learning Echo state networks (ESNs) leave-one-out cross-validation (LOO-CV)

作者机构:

  • [ 1 ] [Yang, Cuili]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 2 ] [Zhu, Xinxin]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 3 ] [Ahmad, Zohaib]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 4 ] [Wang, Lei]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 5 ] [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China

通讯作者信息:

  • 乔俊飞

    [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE ACCESS

ISSN: 2169-3536

年份: 2018

卷: 6

页码: 74874-74884

3 . 9 0 0

JCR@2022

JCR分区:1

被引次数:

WoS核心集被引频次: 6

SCOPUS被引频次: 9

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:2523/4273640
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司