• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Chen, Lin (Chen, Lin.) | Qiao, Zhilin (Qiao, Zhilin.) | Wang, Minggang (Wang, Minggang.) | Wang, Chao (Wang, Chao.) | Du, Ruijin (Du, Ruijin.) | Stanley, Harry Eugene (Stanley, Harry Eugene.)

收录:

SSCI EI Scopus SCIE

摘要:

Unpredictable stock market factors make it difficult to predict stock index futures. Although efforts to develop an effective prediction method have a long history, recent developments in artificial intelligence and the use of artificial neural networks have increased our success in nonlinear approximation. When we study financial markets, we can now extract features from a big data environment without prior predictive information. We here propose to further improve this predictive performance using a combination of a deep-learning-based stock index futures prediction model, an autoencoder, and a restricted Boltzmann machine. We use high-frequency data to examine the predictive performance of deep learning, and we compare three traditional artificial neural networks: 1) the back propagation neural network; 2) the extreme learning machine; and 3) the radial basis function neural network. We use all of the 1-min high-frequency transaction data of the CSI 300 futures contract (IF1704) in our empirical analysis, and we test three groups of different volume samples to validate our observations. We find that the deep learning method of predicting stock index futures outperforms the back propagation, the extreme learning machine, and the radial basis function neural network in its fitting degree and directional predictive accuracy. We also find that increasing the amount of data increases predictive performance. This indicates that deep learning captures the nonlinear features of transaction data and can serve as a powerful stock index futures prediction tool for financial market investors.

关键词:

stock markets deep learning artificial neural networks Prediction methods

作者机构:

  • [ 1 ] [Chen, Lin]Northwestern Polytech Univ, Sch Management, Xian 710072, Shaanxi, Peoples R China
  • [ 2 ] [Qiao, Zhilin]Xi An Jiao Tong Univ, Sch Econ & Finance, Xian 710061, Shaanxi, Peoples R China
  • [ 3 ] [Wang, Minggang]Nanjing Normal Univ, Sch Math Sci, Nanjing 210042, Jiangsu, Peoples R China
  • [ 4 ] [Wang, Chao]Beijing Univ Technol, Coll Econ & Management, Beijing 100124, Peoples R China
  • [ 5 ] [Du, Ruijin]Jiangsu Univ, Energy Dev & Environm Protect Strategy Res Ctr, Zhenjiang 212013, Peoples R China
  • [ 6 ] [Stanley, Harry Eugene]Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA
  • [ 7 ] [Stanley, Harry Eugene]Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA

通讯作者信息:

  • [Qiao, Zhilin]Xi An Jiao Tong Univ, Sch Econ & Finance, Xian 710061, Shaanxi, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

IEEE ACCESS

ISSN: 2169-3536

年份: 2018

卷: 6

页码: 48625-48633

3 . 9 0 0

JCR@2022

JCR分区:1

被引次数:

WoS核心集被引频次: 67

SCOPUS被引频次: 101

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:397/4288645
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司