• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Mi (Li, Mi.) (学者:栗觅) | Zhang, Ming (Zhang, Ming.) | Chen, Huan (Chen, Huan.) | Lu, Shengfu (Lu, Shengfu.)

收录:

Scopus SCIE PubMed

摘要:

With the rapid development of information technology and biomedical engineering, people can get more and more information. At the same time, they begin to study how to apply the advanced technology in biomedical information. The main research of this paper is to optimize the machine learning method by particle swarm optimization (PSO) and apply it in the classification of biomedical data. In order to improve the performance of the classification model, we compared the different inertia weight strategies and mutation strategies and their combinations with PSO, and obtained the best inertia weight strategy without mutation, the best mutation strategy without inertia weight and the best combination of the two. Then, we used the three PSO algorithms to optimize the parameters of support vector machine in the classification of biomedical data. We found that the PSO algorithm with the combination of inertia weight and mutation strategy and the inertia weight strategy that we proposed could improve the classification accuracy. This study has an important reference value for the prediction of clinical diseases.

关键词:

Inertia weight strategy Support vector machine Particle swarm optimization Biomedical information classification Mutation strategy

作者机构:

  • [ 1 ] [Lu, Shengfu]Beijing Univ Technol, Beijing Adv Innovat Ctr Future Internet Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Li, Mi]Beijing Univ Technol, Fac Informat Technol, Dept Automat, Beijing 100124, Peoples R China
  • [ 3 ] [Zhang, Ming]Beijing Univ Technol, Fac Informat Technol, Dept Automat, Beijing 100124, Peoples R China
  • [ 4 ] [Chen, Huan]Beijing Univ Technol, Fac Informat Technol, Dept Automat, Beijing 100124, Peoples R China
  • [ 5 ] [Lu, Shengfu]Beijing Univ Technol, Fac Informat Technol, Dept Automat, Beijing 100124, Peoples R China
  • [ 6 ] [Li, Mi]Beijing Int Collaborat Base Brain Informat & Wisd, Beijing 100024, Peoples R China
  • [ 7 ] [Zhang, Ming]Beijing Int Collaborat Base Brain Informat & Wisd, Beijing 100024, Peoples R China
  • [ 8 ] [Chen, Huan]Beijing Int Collaborat Base Brain Informat & Wisd, Beijing 100024, Peoples R China
  • [ 9 ] [Lu, Shengfu]Beijing Int Collaborat Base Brain Informat & Wisd, Beijing 100024, Peoples R China

通讯作者信息:

  • [Lu, Shengfu]Beijing Univ Technol, Beijing Adv Innovat Ctr Future Internet Technol, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

OPEN LIFE SCIENCES

ISSN: 2391-5412

年份: 2018

期: 1

卷: 13

页码: 355-373

2 . 2 0 0

JCR@2022

ESI学科: BIOLOGY & BIOCHEMISTRY;

ESI高被引阀值:193

JCR分区:4

被引次数:

WoS核心集被引频次: 6

SCOPUS被引频次: 5

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:965/3902318
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司