• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Rui (Zhang, Rui.) | Zhou, Zhuhuang (Zhou, Zhuhuang.) | Wu, Weiwei (Wu, Weiwei.) | Lin, Chung-Chih (Lin, Chung-Chih.) | Tsui, Po-Hsiang (Tsui, Po-Hsiang.) | Wu, Shuicai (Wu, Shuicai.) (学者:吴水才)

收录:

EI Scopus SCIE PubMed

摘要:

In this paper, an improved fuzzy connectedness (PC) method was proposed for automatic three-dimensional (3D) liver vessel segmentation in computed tomography (CT) images. The vessel-enhanced image (i.e., vesselness image) was incorporated into the fuzzy affinity function of FC, rather than the intensity image used by traditional FC. An improved vesselness filter was proposed by incorporating adaptive sigmoid filtering and a background-suppressing item. The fuzzy scene of FC was automatically initialized by using the Otsu segmentation algorithm and one single seed generated adaptively, while traditional FC required multiple seeds. The improved FC method was evaluated on 40 cases of clinical CT volumetric images from the 3Dircadb (n = 20) and Sliver07 (n = 20) datasets. Experimental results showed that the proposed liver vessel segmentation strategy could achieve better segmentation performance than traditional FC, region growing, and threshold level set. Average accuracy, sensitivity, specificity, and Dice coefficient of the improved FC method were, respectively, (96.4 +/- 1.1)%, (73.7 +/- 7.6)%, (97.4 +/- 1.3)%, and (67.3 +/- 5.7)% for the 3Dircadb dataset and (96.8 +/- 0.6)%, (89.1 +/- 6.8)%, (97.6 +/- 1.1)%, and (71.4 +/- 7.6)% for the Sliver07 dataset. It was concluded that the improved FC may be used as a new method for automatic 3D segmentation of liver vessel from CT images.

关键词:

作者机构:

  • [ 1 ] [Zhang, Rui]Beijing Univ Technol, Coll Life Sci & Bioengn, Beijing 100124, Peoples R China
  • [ 2 ] [Zhou, Zhuhuang]Beijing Univ Technol, Coll Life Sci & Bioengn, Beijing 100124, Peoples R China
  • [ 3 ] [Wu, Shuicai]Beijing Univ Technol, Coll Life Sci & Bioengn, Beijing 100124, Peoples R China
  • [ 4 ] [Wu, Weiwei]Capital Med Univ, Coll Biomed Engn, Beijing 100069, Peoples R China
  • [ 5 ] [Lin, Chung-Chih]Chang Gung Univ, Dept Comp Sci & Informat Engn, Taoyuan 33302, Taiwan
  • [ 6 ] [Tsui, Po-Hsiang]Chang Gung Univ, Coll Med, Dept Med Imaging & Radiol Sci, Taoyuan 33302, Taiwan
  • [ 7 ] [Tsui, Po-Hsiang]Chang Gung Mem Hosp Linkou, Dept Med Imaging & Intervent, Taoyuan 33302, Taiwan
  • [ 8 ] [Tsui, Po-Hsiang]Chang Gung Univ, Med Imaging Res Ctr, Inst Radiol Res, Taoyuan 33302, Taiwan
  • [ 9 ] [Tsui, Po-Hsiang]Chang Gung Mem Hosp Linkou, Taoyuan 33302, Taiwan

通讯作者信息:

  • 吴水才

    [Wu, Shuicai]Beijing Univ Technol, Coll Life Sci & Bioengn, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

JOURNAL OF HEALTHCARE ENGINEERING

ISSN: 2040-2295

年份: 2018

卷: 2018

ESI学科: Multidisciplinary;

ESI高被引阀值:337

JCR分区:4

被引次数:

WoS核心集被引频次: 24

SCOPUS被引频次: 27

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:50/3930531
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司