• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhao, Z. (Zhao, Z..) | Gong, Q. (Gong, Q..) | Zhang, Y. (Zhang, Y..) (学者:张勇) | Zhao, J. (Zhao, J..) (学者:赵京)

收录:

Scopus

摘要:

The penetration rate of a tunnel boring machine (TBM) depends on many factors ranging from the machine design to the geological properties. Therefore it may not be possible to capture this complex relationship in an explicit mathematical expression. In this paper, we propose an ensemble neural network (ENN) to predict TBM performance. Based on site data, a four-parameter ENN model for the prediction of the specific rock mass boreability index is constructed. Such a neural-network-based model has the advantages of taking into account the uncertainties embedded in the site data and making appropriate inferences using very limited data via the re-sampling technique. The ENN-based prediction model is compared with a non-linear regression model derived from the same four parameters. The ENN model outperforms the non-linear regression model.

关键词:

Ensemble neural network; Specific rock mass boreability index; Tunnel boring machine performance

作者机构:

  • [ 1 ] [Zhao, Z.]School of Civil and Environmental Engineering, Nanyang Technological University, Nanyang, Singapore
  • [ 2 ] [Gong, Q.]Ecole Polytechnique Fédérales de Lausanne (EPFL), Rock Mechanics Laboratory, Lausanne, Switzerland
  • [ 3 ] [Gong, Q.]College of Architecture and Civil Engineering, Beijing University of Technology, Beijing, China
  • [ 4 ] [Zhang, Y.]School of Civil and Environmental Engineering, Nanyang Technological University, Nanyang, Singapore
  • [ 5 ] [Zhao, J.]Ecole Polytechnique Fédérales de Lausanne (EPFL), Rock Mechanics Laboratory, Lausanne, Switzerland

通讯作者信息:

  • [Zhao, Z.]School of Civil and Environmental Engineering, Nanyang Technological University, Nanyang, Singapore

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Geomechanics and Geoengineering

ISSN: 1748-6025

年份: 2007

期: 2

卷: 2

页码: 123-128

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 65

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:388/4294676
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司