收录:
摘要:
The penetration rate of a tunnel boring machine (TBM) depends on many factors ranging from the machine design to the geological properties. Therefore it may not be possible to capture this complex relationship in an explicit mathematical expression. In this paper, we propose an ensemble neural network (ENN) to predict TBM performance. Based on site data, a four-parameter ENN model for the prediction of the specific rock mass boreability index is constructed. Such a neural-network-based model has the advantages of taking into account the uncertainties embedded in the site data and making appropriate inferences using very limited data via the re-sampling technique. The ENN-based prediction model is compared with a non-linear regression model derived from the same four parameters. The ENN model outperforms the non-linear regression model.
关键词:
通讯作者信息:
电子邮件地址: