• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Meng (Wang, Meng.) | Ning, Zhen-Hu (Ning, Zhen-Hu.) | Xiao, Chuangbai (Xiao, Chuangbai.) | Li, Tong (Li, Tong.)

收录:

EI Scopus SCIE

摘要:

Sentiment classification for reviews has attracted increasingly more attention from the natural language processing community. By embedding prior knowledge into learning structures, classifiers often achieve a better performance than original methods. In this paper, we propose a sophisticated algorithm based on deep learning and information geometry in which the distribution of all training samples in the space is treated as prior knowledge and is encoded by deep belief networks (DBNs). From the view of information geometry, we construct the geodesic distance between the distributions over the features for classification. The study of the distributions contributes to the training of the DBN, since the distance is correlated to the error rate in the classification. Finally, we evaluate our proposal using empirical data sets that are dedicated for sentiment classification. The results show that our algorithm results in a significant improvement over existing methods.

关键词:

Information geometry semi-supervised learning neural networks sentiment classification

作者机构:

  • [ 1 ] [Wang, Meng]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Ning, Zhen-Hu]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Xiao, Chuangbai]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Li, Tong]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

通讯作者信息:

  • [Ning, Zhen-Hu]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

IEEE ACCESS

ISSN: 2169-3536

年份: 2018

卷: 6

页码: 35206-35213

3 . 9 0 0

JCR@2022

JCR分区:1

被引次数:

WoS核心集被引频次: 10

SCOPUS被引频次: 11

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:768/3916090
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司