• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Qiao, Junfei (Qiao, Junfei.) (学者:乔俊飞) | Zhou, Hongbiao (Zhou, Hongbiao.) | Yang, Cuili (Yang, Cuili.)

收录:

EI Scopus SCIE

摘要:

The convergence and diversity of the Pareto optimal solutions is of great importance for multiobjective evolutionary algorithms. Based on parallel cell balanceable fitness estimation (PCBFE), a novel bare-bones multiobjective particle swarm optimization (NBBMOPSO) algorithm is proposed in this paper. First, the PCBFE strategy, which is based on the parallel cell mapping approach, is developed to retain the balance between the proximity and the diversity. After that, the PCB1-E strategy is adopted to maintain external archive and update leaders. Second, an adaptive update strategy for crossover probability is designed to repair the weakness of particle search. Finally, an elitism learning strategy is performed to exchange useful information among solutions in the external archive, which can enhance the capability of dropping out of the local Pareto front. To demonstrate the merits of NBBMOPSO for multiobjective optimization, Zitzler-Deb-Thiele (ZDT) and Deb-Thiele-Laumanns-Zitzler (DTLZ) test suits are examined with comparisons against the other seven state-of-the-art competitors. Experimental results show that the proposed NBBMOPSO outperforms all the other methods in terms of the chosen performance metrics.

关键词:

bare-bones particle swarm optimization elitism learning strateg Multiobjective optimization problems parallel cell balanceable fitness estimation adaptive crossover probability

作者机构:

  • [ 1 ] [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Qiao, Junfei]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China

通讯作者信息:

  • 乔俊飞

    [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

IEEE ACCESS

ISSN: 2169-3536

年份: 2018

卷: 6

页码: 32493-32506

3 . 9 0 0

JCR@2022

JCR分区:1

被引次数:

WoS核心集被引频次: 6

SCOPUS被引频次: 7

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:290/5022667
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司