• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Yahong (Zhang, Yahong.) | Li, Yujian (Li, Yujian.) | Zhang, Ting (Zhang, Ting.) | Gadosey, Pius Kwao (Gadosey, Pius Kwao.) | Liu, Zhaoying (Liu, Zhaoying.)

收录:

EI Scopus SCIE

摘要:

Feature clustering is a powerful technique for dimensionality reduction. However, existing approaches require the number of clusters to be given in advance or controlled by parameters. In this paper, by combining with affinity propagation (AP), we propose a new feature clustering (FC) algorithm, called APFC, for dimensionality reduction. For a given training dataset, the original features automatically form a bunch of clusters by AP. A new feature can then be extracted from each cluster in three different ways for reducing the dimensionality of the original data. APFC requires no provision of the number of clusters (or extracted features) beforehand. Moreover, it avoids computing the eigenvalues and eigenvectors of covariance matrix which is often necessary in many feature extraction methods. In order to demonstrate the effectiveness and efficiency of APFC, extensive experiments are conducted to compare it with three well-established dimensionality reduction methods on 14 UCI datasets in terms of classification accuracy and computational time.

关键词:

affinity propagation Classification dimensionality reduction feature clustering

作者机构:

  • [ 1 ] [Zhang, Yahong]Beijing Univ Technol, Coll Comp Sci, Beijing, Peoples R China
  • [ 2 ] [Li, Yujian]Beijing Univ Technol, Coll Comp Sci, Beijing, Peoples R China
  • [ 3 ] [Zhang, Ting]Beijing Univ Technol, Coll Comp Sci, Beijing, Peoples R China
  • [ 4 ] [Gadosey, Pius Kwao]Beijing Univ Technol, Coll Comp Sci, Beijing, Peoples R China
  • [ 5 ] [Liu, Zhaoying]Beijing Univ Technol, Coll Comp Sci, Beijing, Peoples R China

通讯作者信息:

  • 李玉鑑

    [Li, Yujian]Beijing Univ Technol, Coll Comp Sci, Beijing, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

INTELLIGENT DATA ANALYSIS

ISSN: 1088-467X

年份: 2018

期: 2

卷: 22

页码: 309-323

1 . 7 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:81

JCR分区:4

被引次数:

WoS核心集被引频次: 1

SCOPUS被引频次: 2

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:2615/3726850
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司