• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Qiao, Jun-Fei (Qiao, Jun-Fei.) (学者:乔俊飞) | Lu, Chao (Lu, Chao.) | Li, Wen-Jing (Li, Wen-Jing.)

收录:

EI Scopus SCIE

摘要:

To solve the problem that subnetwork output cannot be optimally integrated in a modular neural network (MNN), this paper proposes an adaptive particle swarm optimization algorithm for dynamic MNN (APSO-DMNN). First, the method identifies the distribution of samples and updates the training parameters based on data potential. Second, the MNN activates the corresponding subnetworks according to the input data. Calculate the weights based on an APSO algorithm, which can dynamically optimize the contribution of the output. Then, the inertia weights in the APSO algorithm are adjusted by a nonlinear function in order to avoid being trapped into local optimal values. Finally, the proposed APSO-DMNN can be obtained based on the optimal integration and dynamic adjustment. Comparisons with other algorithms indicate that the proposed method is more effective in modeling and predicting.

关键词:

time varying system Modular neural network dynamic output integration adaptive particle swarm optimization algorithm

作者机构:

  • [ 1 ] [Lu, Chao]Beijing Univ Technol, Fac Informat Technol, Beijing 100022, Peoples R China
  • [ 2 ] [Lu, Chao]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100022, Peoples R China

通讯作者信息:

  • [Lu, Chao]Beijing Univ Technol, Fac Informat Technol, Beijing 100022, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

IEEE ACCESS

ISSN: 2169-3536

年份: 2018

卷: 6

页码: 10850-10857

3 . 9 0 0

JCR@2022

JCR分区:1

被引次数:

WoS核心集被引频次: 16

SCOPUS被引频次: 20

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:520/4280574
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司