• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Qiao, Junfei (Qiao, Junfei.) (学者:乔俊飞) | Wang, Lei (Wang, Lei.) | Yang, Cuili (Yang, Cuili.) | Gu, Ke (Gu, Ke.) (学者:顾锞)

收录:

EI Scopus SCIE

摘要:

Echo state networks (ESNs) have wide applications in chaotic time series prediction. In the ESN, if the smallest singular value of the reservoir state matrix is infinitesimal, the ill-posed problem might occur during the training process. To overcome this problem, an adaptive Levenberg Marquardt (LM) algorithm-based echo state network (ALM-ESN) is developed. In the developed ALM-ESN, a new adaptive damping term is introduced into the LM algorithm. The adaptive factor is amended by the trust region technique, furthermore, convergence analysis, and stability analysis are performed. Moreover, to make the inputs fall within the active region of the activation function and improve the learning speed, a weight initialization method using linear algebra is deployed to determine the appropriate input weights and reservoir weights. Simulations demonstrate that the ALM-ESN can overcome the ill-posed problem. Furthermore, it exhibits better performance and robustness for chaotic time series prediction than some other existing methods.

关键词:

adaptive Levenberg-Marquardt algorithm weight initialization Echo state network trust region technique chaotic time series prediction

作者机构:

  • [ 1 ] [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 2 ] [Wang, Lei]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 3 ] [Yang, Cuili]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 4 ] [Gu, Ke]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China

通讯作者信息:

  • 乔俊飞

    [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE ACCESS

ISSN: 2169-3536

年份: 2018

卷: 6

页码: 10720-10732

3 . 9 0 0

JCR@2022

JCR分区:1

被引次数:

WoS核心集被引频次: 33

SCOPUS被引频次: 45

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:1000/3899377
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司