• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhu Jiangmiao (Zhu Jiangmiao.) | Sun Panpan (Sun Panpan.) | Gao Yuan (Gao Yuan.) | Zheng Pengfei (Zheng Pengfei.)

收录:

EI Scopus SCIE

摘要:

A new prediction algorithm based on Empirical model decomposition (EMD) and Support vector machine (SVM) is put forward in this paper, and this algorithm solves the problem of the hydrogen atomic clock differences prediction, which is affected by the non-linearity and non-stability. The clock differences were decomposed into Intrinsic mode functions (IMF) and the residual series. The suitable kernel function and parameters were chosen to build the different SVM for predicting each IMF and the residual series. Each prediction result was summed to obtain the clock differences prediction. Results show that the EMD-SVM algorithm is effective compared with the linear regression and single SVM. The relative prediction error is reduced from 0.4327% to 0.2371%, and the dispersion is less than other methods.

关键词:

Empirical model decomposition (EMD) Clock differences prediction Support vector machine (SVM)

作者机构:

  • [ 1 ] [Zhu Jiangmiao]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Sun Panpan]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Zheng Pengfei]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Gao Yuan]Natl Inst Metrol, Beijing 100013, Peoples R China
  • [ 5 ] [Sun Panpan]Beijing Univ Technol, Beijing, Peoples R China

通讯作者信息:

  • [Zhu Jiangmiao]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

CHINESE JOURNAL OF ELECTRONICS

ISSN: 1022-4653

年份: 2018

期: 1

卷: 27

页码: 128-132

1 . 2 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:156

JCR分区:4

被引次数:

WoS核心集被引频次: 10

SCOPUS被引频次: 10

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:926/3899190
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司