• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Han, Q. (Han, Q..) (学者:韩强) | Zhuo, L. (Zhuo, L..) | Long, H. (Long, H..)

收录:

Scopus

摘要:

In this paper, firstly, an adaptive Dense-SIFT feature extraction method is proposed, which can adaptively adjust the size of local window using the edge information of image. Next, a large scale image retrieval method is proposed. The adaptive Dense-SIFT features are extracted from the database images. Bag of Word (BoW) model is then adopted to create the corresponding histograms of visual words frequency to represent the features. To efficiently describe the image content, the feature vectors are constructed by combining the visual words histograms of Dense-SIFT feature with the 72-dimensional HSV (Hue, Saturation, Value) color feature. In retrieval process, the top-h most similar images are returned by computing the similarity between the feature vectors of querying image and those of the images in database. Finally, to further improve the accuracy, the returned images are re-ranked with context similarity information. The experimental results on Corel-5K and Oxford Buildings dataset show that the proposed method outperforms the existing image retrieval methods. © 2015 IEEE.

关键词:

adaptive Dense-SIFT; image retrieval; re-ranking; visual words

作者机构:

  • [ 1 ] [Han, Q.]Signal and Information Processing Laboratory, Beijing University of Technology, Beij ing, China
  • [ 2 ] [Zhuo, L.]Signal and Information Processing Laboratory, Beijing University of Technology, Beij ing, China
  • [ 3 ] [Long, H.]Signal and Information Processing Laboratory, Beijing University of Technology, Beij ing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Proceedings of 2015 IEEE International Conference on Progress in Informatics and Computing, PIC 2015

年份: 2016

页码: 369-373

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 5

在线人数/总访问数:695/3902738
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司