• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Haiying (Liu, Haiying.) | Wu, Lifang (Wu, Lifang.) (学者:毋立芳) | Zhang, Dai (Zhang, Dai.) | Jian, Meng (Jian, Meng.) | Zhang, Xiuzhen (Zhang, Xiuzhen.)

收录:

EI Scopus SCIE

摘要:

Content curation social networks (CCSN) develop rapidly. Pinterest and Huaban are two typical CCSNs. Recently, there is active research on CCSNs. As a kind of content based social network, CCSNs involve not only the explicit social relations from user "following", but also content-based social relations from re-pin paths and so on. In this paper, we propose a novel user representation learning algorithm, Multi perspective User2Vec Representation (MUVR). It combines the two types of social relations to get the rich user sequences. Then the representation learning is implemented by using the skip-gram algorithm. Experimental results on Huaban.com demonstrate that the proposed algorithm can represent network well. It presents more competitive results in the followee recommendation, re-pinner recommendation and multi-label classification. (C) 2017 Published by Elsevier B.V.

关键词:

Network representation Re-pin path Content curation

作者机构:

  • [ 1 ] [Liu, Haiying]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Wu, Lifang]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Zhang, Dai]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 4 ] [Jian, Meng]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 5 ] [Liu, Haiying]North China Univ Sci & Technol, Coll Informat Engn, Tangshan, Peoples R China
  • [ 6 ] [Zhang, Xiuzhen]RMIT Univ, Sch Comp Sci & Informat Technol, Shanghai, Peoples R China

通讯作者信息:

  • 毋立芳

    [Wu, Lifang]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

查看成果更多字段

相关关键词:

来源 :

SIGNAL PROCESSING

ISSN: 0165-1684

年份: 2018

卷: 142

页码: 450-456

4 . 4 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:156

JCR分区:1

被引次数:

WoS核心集被引频次: 10

SCOPUS被引频次: 11

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:1180/4287883
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司