• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zheng, Wenjian (Zheng, Wenjian.) | Gao, Xuejin (Gao, Xuejin.) (学者:高学金) | Liu, Yi (Liu, Yi.) | Wang, Limei (Wang, Limei.) | Yang, Jianguo (Yang, Jianguo.) | Gao, Zengliang (Gao, Zengliang.)

收录:

Scopus SCIE

摘要:

In industrial rubber mixing processes, the quality index (i.e., Mooney viscosity) cannot be online measured directly. Traditional data-driven empirical models for online prediction of the Mooney viscosity have not utilized the information hidden in lots of unlabeled data (e.g., process input variables during each mixing batch). A simple semi-supervised nonlinear soft sensor method for the Mooney viscosity prediction is developed. It integrates extreme learning machine (ELM) and the graph Laplacian regularization into a unified modeling framework. The useful information in unlabeled data can be explored and introduced into the prediction model. Furthermore, a bagging-based ensemble strategy is combined into semi-supervised ELM (SELM) to obtain more accurate predictions. The Mooney viscosity prediction in an industrial internal mixer exhibits its promising prediction performance of the proposed method by incorporating the information in unlabeled data efficiently.

关键词:

Soft sensor Mooney viscosity Semi-supervised model Rubber mixing process Extreme learning machine

作者机构:

  • [ 1 ] [Zheng, Wenjian]Zhejiang Univ Technol, Inst Proc Equipment & Control Engn, Hangzhou 310014, Zhejiang, Peoples R China
  • [ 2 ] [Liu, Yi]Zhejiang Univ Technol, Inst Proc Equipment & Control Engn, Hangzhou 310014, Zhejiang, Peoples R China
  • [ 3 ] [Wang, Limei]Zhejiang Univ Technol, Inst Proc Equipment & Control Engn, Hangzhou 310014, Zhejiang, Peoples R China
  • [ 4 ] [Yang, Jianguo]Zhejiang Univ Technol, Inst Proc Equipment & Control Engn, Hangzhou 310014, Zhejiang, Peoples R China
  • [ 5 ] [Gao, Zengliang]Zhejiang Univ Technol, Inst Proc Equipment & Control Engn, Hangzhou 310014, Zhejiang, Peoples R China
  • [ 6 ] [Gao, Xuejin]Beijing Univ Technol, Minist Educ, Engn Res Ctr Digital Community, Fac Informat Technol, Beijing 100124, Peoples R China

通讯作者信息:

  • [Liu, Yi]Zhejiang Univ Technol, Inst Proc Equipment & Control Engn, Hangzhou 310014, Zhejiang, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS

ISSN: 0169-7439

年份: 2017

卷: 171

页码: 86-92

3 . 9 0 0

JCR@2022

ESI学科: CHEMISTRY;

ESI高被引阀值:212

中科院分区:2

被引次数:

WoS核心集被引频次: 26

SCOPUS被引频次: 26

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:424/4295251
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司