• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Xue, Z. (Xue, Z..) | Li, G. (Li, G..) (学者:李港) | Zhang, W. (Zhang, W..) | Pang, J. (Pang, J..) | Huang, Q. (Huang, Q..)

收录:

Scopus

摘要:

With the rapid development of social media, the topics emerge and propagate in a variety of media websites. Although much work has been done since NIST proposed the problem of topic detection and tracking (TDT), most of them focus on single media data and are mainly based on unsupervised clustering method, which does not use some side information to help detecting topics. Therefore, traditional TDT approaches are not competent for cross-media topic detection. To efficiently use the information contained in multi-modal data from different sources and the prior knowledge, we propose a semi-supervised co-clustering approach for cross-media topic detection by a constrained non-negative matrix factorization. The correctness and convergence of our approach are proved to demonstrate its mathematical rigorousness. Experiments on the cross-media dataset verify the effectiveness of our proposed approach. © 2014, Springer-Verlag London.

关键词:

Cross-media; Non-negative matrix factorization; Semi-supervised clustering; Topic detection

作者机构:

  • [ 1 ] [Xue, Z.]University of Chinese Academy of Sciences, Beijing, China
  • [ 2 ] [Li, G.]University of Chinese Academy of Sciences, Beijing, China
  • [ 3 ] [Zhang, W.]School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
  • [ 4 ] [Pang, J.]The College of Computer Science, Beijing University of Technology, Beijing, China
  • [ 5 ] [Huang, Q.]University of Chinese Academy of Sciences, Beijing, China
  • [ 6 ] [Huang, Q.]Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

通讯作者信息:

  • [Xue, Z.]University of Chinese Academy of SciencesChina

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

International Journal of Multimedia Information Retrieval

ISSN: 2192-6611

年份: 2014

期: 3

卷: 3

页码: 193-205

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 14

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:321/4973760
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司