• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yang, Jinfu (Yang, Jinfu.) (学者:杨金福) | Wang, Ying (Wang, Ying.) | Wang, Guanghui (Wang, Guanghui.) | Li, Mingai (Li, Mingai.) (学者:李明爱)

收录:

Scopus SCIE

摘要:

Salient object detection, as a necessary step of many computer vision applications, has attracted extensive attention in recent years. A novel salient object detection method is proposed based on multi-superpixel-scale contrast. Saliency value of each superpixel is measured with a global score, which is computed using the region's colour contrast and the spatial distances to all other regions in the image. High-level information is also incorporated to improve the performance, and the saliency maps are fused across multiple levels to yield a reliable final result using the modified multi-layer cellular automata. The proposed algorithm is evaluated and compared with five state-of-the-art approaches on three publicly standard datasets. Both quantitative and qualitative experimental results demonstrate the effectiveness and efficiency of the proposed method.

关键词:

computer vision object detection image resolution modified multilayer cellular automata high-level information global multiscale superpixel contrast cellular automata novel salient object detection method

作者机构:

  • [ 1 ] [Yang, Jinfu]Beijing Univ Technol, Fac Informat Technol, 100 Pingleyuan, Beijing 100124, Peoples R China
  • [ 2 ] [Wang, Ying]Beijing Univ Technol, Fac Informat Technol, 100 Pingleyuan, Beijing 100124, Peoples R China
  • [ 3 ] [Li, Mingai]Beijing Univ Technol, Fac Informat Technol, 100 Pingleyuan, Beijing 100124, Peoples R China
  • [ 4 ] [Wang, Guanghui]Univ Kansas, Dept Elect Engn & Comp Sci, Lawrence, KS 66045 USA

通讯作者信息:

  • [Wang, Ying]Beijing Univ Technol, Fac Informat Technol, 100 Pingleyuan, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

IET COMPUTER VISION

ISSN: 1751-9632

年份: 2017

期: 8

卷: 11

页码: 710-716

1 . 7 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:175

中科院分区:4

被引次数:

WoS核心集被引频次: 5

SCOPUS被引频次: 5

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:2450/4261304
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司