• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Sun, Y.-F. (Sun, Y.-F..) (学者:孙艳丰) | Jiang, T.-C. (Jiang, T.-C..) | Hu, Y.-L. (Hu, Y.-L..) (学者:胡永利)

收录:

Scopus PKU CSCD

摘要:

To solve the problem that when the dimension of variables was high, canonical correlation analysis couldn't give a stable model of the problem, a facial expression recognition method based on adaptive weights sparse canonical correlation analysis was proposed. Sparse canonical correlation analysis attached a constraint of coefficient convergence, some of the factors in the basis vectors converged to zero, therefore it would be able to remove some useless variables for the facial expression recognition. In the process of solving sparse canonical correlation analysis, sparse weight was a fixed value, therefore the method of adaptive weights was used to reduce the error when solving the sparse canonical vector. Results on Jaffe and Cohn-Kanade tests of facial expression database show that the proposed method is correctness and effectiveness.

关键词:

Adaptive; Facial expression recognition; Sparse canonical correlation analysis

作者机构:

  • [ 1 ] [Sun, Y.-F.]Beijing Municipal Key Lab of Multimedia and Intelligent Software Technology, College of Computer Science, Beijing University of Technology, Beijing 100124, China
  • [ 2 ] [Jiang, T.-C.]Beijing Municipal Key Lab of Multimedia and Intelligent Software Technology, College of Computer Science, Beijing University of Technology, Beijing 100124, China
  • [ 3 ] [Hu, Y.-L.]Beijing Municipal Key Lab of Multimedia and Intelligent Software Technology, College of Computer Science, Beijing University of Technology, Beijing 100124, China

通讯作者信息:

  • 孙艳丰

    [Sun, Y.-F.]Beijing Municipal Key Lab of Multimedia and Intelligent Software Technology, College of Computer Science, Beijing University of Technology, Beijing 100124, China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Journal of Beijing University of Technology

ISSN: 0254-0037

年份: 2014

期: 1

卷: 40

页码: 49-53,60

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:674/3906715
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司